Clever Geek Handbook
📜 ⬆️ ⬇️

Bilinear form

Let beL {\ displaystyle L} L there is a vector space above the fieldK {\ displaystyle K} K (most often considered fieldsK=R {\ displaystyle K = \ mathbb {R}} K = {\ mathbb R} orK=C {\ displaystyle K = \ mathbb {C}} K = {\ mathbb C} ).

A bilinear form is a function.F:L×L→K {\ displaystyle F \ colon L \ times L \ to K} F \ colon L \ times L \ to K linear for each of the arguments :

F(x+z,y)=F(x,y)+F(z,y){\ displaystyle F (x + z, \, y) = F (x, \, y) + F (z, \, y)} {\ displaystyle F (x + z, \, y) = F (x, \, y) + F (z, \, y)} ,
F(x,y+z)=F(x,y)+F(x,z){\ displaystyle F (x, \, y + z) = F (x, \, y) + F (x, \, z)} {\ displaystyle F (x, \, y + z) = F (x, \, y) + F (x, \, z)} ,
F(λx,y)=λF(x,y){\ displaystyle F (\ lambda x, \, y) = \ lambda F (x, \, y)} {\ displaystyle F (\ lambda x, \, y) = \ lambda F (x, \, y)} ,
F(x,λy)=λF(x,y){\ displaystyle F (x, \, \ lambda y) = \ lambda F (x, \, y)} {\ displaystyle F (x, \, \ lambda y) = \ lambda F (x, \, y)} ,

herex,y,z∈L {\ displaystyle x, y, z \ in L} x, y, z \ in L andλ∈K. {\ displaystyle \ lambda \ in K.} \ lambda \ in K.

The bilinear form is a special case of the notion of a tensor (a tensor of rank (0.2)).

Content

Alternative Definition

In the case of finite-dimensional spaces (for example,Rn {\ displaystyle \ mathbb {R} ^ {n}}   ) a different definition is often used.

Let beL {\ displaystyle L}   there are many view vectorsx=(xone,x2,...,xn), {\ displaystyle x = (x_ {1}, x_ {2}, \ dots, x_ {n}),}   Wherexi∈K,i=one,n¯ {\ displaystyle x_ {i} \ in K, i = {\ overline {1, n}}}   .

Bilinear forms are called functions.F:L×L→K {\ displaystyle F \ colon L \ times L \ to K}   kind of

F(x,y)=Σi,j=onenaijxiyj,{\ displaystyle F (x, y) = \ sum _ {i, \, j = 1} ^ {n} a_ {ij} x_ {i} y_ {j},}  

Wherex=(xone,x2,...,xn), {\ displaystyle x = (x_ {1}, x_ {2}, \ dots, x_ {n}),}  y=(yone,y2,...,yn), {\ displaystyle y = (y_ {1}, y_ {2}, \ dots, y_ {n}),}   butaij {\ displaystyle a_ {ij}}   - some constants from the fieldK. {\ displaystyle K.}  

In other words, the bilinear form is a function of two groups ofn {\ displaystyle n}   variables, which is a homogeneous polynomial of the first degree with respect to variables from each group.

Related definitions

  • Bilinear formF {\ displaystyle F}   called symmetric ifF(x,y)=F(y,x) {\ displaystyle F (x, \, y) = F (y, \, x)}   for any vectorsx,y∈L {\ displaystyle x, y \ in L}   .
  • Bilinear formF {\ displaystyle F}   called antisymmetric (antisymmetric) ifF(x,y)=-F(y,x) {\ displaystyle F (x, \, y) = - F (y, \, x)}   for any vectorsx,y∈L {\ displaystyle x, y \ in L}   .
  • Vectorx∈L {\ displaystyle x \ in L}   is called orthogonal (more precisely, left orthogonal ) subspaceM⊂L {\ displaystyle M \ subset L}   regardingF {\ displaystyle F}   , if aF(x,y)=0 {\ displaystyle F (x, \, y) = 0}   for ally∈M {\ displaystyle y \ in M}   . The set of vectorsx∈L {\ displaystyle x \ in L}   orthogonal to a subspaceM⊂L {\ displaystyle M \ subset L}   relative to this bilinear formF {\ displaystyle F}   is called the orthogonal complement of the subspaceM⊂L {\ displaystyle M \ subset L}   regardingF {\ displaystyle F}   and is denoted byM⊥ {\ displaystyle M ^ {\ perp}}   .
  • Radical bilinear formF {\ displaystyle F}   called the orthogonal complement of the space itselfL {\ displaystyle L}   regardingF {\ displaystyle F}   that is the totalityL⊥ {\ displaystyle L ^ {\ perp}}   vectorsx∈L {\ displaystyle x \ in L}   for whichF(x,y)=0 {\ displaystyle F (x, \, y) = 0}   for ally∈L {\ displaystyle y \ in L}   .

Properties

  • The set of all bilinear formsW(L,L) {\ displaystyle W (L, L)}   defined on an arbitrary fixed space is a linear space.
  • Any bilinear form can be represented as a sum of symmetric and skew-symmetric forms.
  • With selected basiseone,...,en {\ displaystyle e_ {1}, \ ldots, e_ {n}}   atL {\ displaystyle L}   any bilinear formF {\ displaystyle F}   uniquely determined by the matrix
(F(eone,eone)F(eone,e2)...F(eone,en)F(e2,eone)F(e2,e2)...F(e2,en)⋮⋮⋱⋮F(en,eone)F(en,e2)...F(en,en)),{\ displaystyle {\ begin {pmatrix} F (e_ {1}, \, e_ {1}) & F (e_ {1}, \, e_ {2}) & \ ldots & F (e_ {1}, \, e_ {n}) \\ F (e_ {2}, \, e_ {1}) & F (e_ {2}, \, e_ {2}) & \ ldots & F (e_ {2}, \, e_ {n} ) \\\ vdots & \ vdots & \ ddots & \ vdots \\ F (e_ {n}, \, e_ {1}) & F (e_ {n}, \, e_ {2}) & \ ldots & F (e_ {n}, \, e_ {n}) \ end {pmatrix}},}  

so for any vectorsx=xoneeone+x2e2+⋯+xnen {\ displaystyle x = x ^ {1} e_ {1} + x ^ {2} e_ {2} + \ cdots + x ^ {n} e_ {n}}   andy=yoneeone+y2e2+⋯+ynen {\ displaystyle y = y ^ {1} e_ {1} + y ^ {2} e_ {2} + \ cdots + y ^ {n} e_ {n}}  

F(x,y)=(xonex2...xn)(F(eone,eone)F(eone,e2)...F(eone,en)F(e2,eone)F(e2,e2)... F ( e 2 , e n ) ⋮ ⋮ ⋱ ⋮ F ( e n , e one ) F ( e n , e 2 ) ... F ( e n , e n ) ) ( y one y 2 ⋮ y n ) ,{\ displaystyle F (x, \, y) = {\ begin {pmatrix} x ^ {1} & x ^ {2} & \ ldots & x ^ {n} \ end {pmatrix}} {\ begin {pmatrix} F ( e_ {1}, \, e_ {1}) & F (e_ {1}, \, e_ {2}) & \ ldots & F (e_ {1}, \, e_ {n}) \\ F (e_ {2 }, \, e_ {1}) & F (e_ {2}, \, e_ {2}) & \ ldots & F (e_ {2}, \, e_ {n}) \\\ vdots & \ vdots & \ ddots & \ vdots \\ F (e_ {n}, \, e_ {1}) & F (e_ {n}, \, e_ {2}) & \ ldots & F (e_ {n}, \, e_ {n}) \ end {pmatrix}} {\ begin {pmatrix} y ^ {1} \\ y ^ {2} \\\ vdots \\ y ^ {n} \ end {pmatrix}},}  

i.e

F(x,y)=Σi,j=onenfijxiyj,fij=F(ei,ej).{\ displaystyle F (x, \, y) = \ sum _ {i, j = 1} ^ {n} f_ {ij} \, x ^ {i} y ^ {j}, \ \ quad f_ {ij} = F (e_ {i}, \, e_ {j}).}  
  • It also means that the bilinear form is completely determined by its values ​​on the basis vectors.
  • Space dimensionW(L,L) {\ displaystyle W (L, L)}   there isdim⁡W(L,L)=(dim⁡L)2 {\ displaystyle \ dim W (L, L) = (\ dim L) ^ {2}}   .
  • Although the bilinear matrixF {\ displaystyle F}   depends on the choice of basis, the rank of the matrix of the bilinear form in any basis is the same, it is called the rank of the bilinear formF {\ displaystyle F}   . A bilinear form is called nondegenerate if its rank is equal todim⁡L {\ displaystyle \ dim L}   .
  • For any subspaceM⊂L {\ displaystyle M \ subset L}   orthogonal complementM⊥ {\ displaystyle M ^ {\ perp}}   is a subspaceM⊥⊂L {\ displaystyle M ^ {\ perp} \ subset L}   .
  • dim⁡L⊥=dim⁡L-r{\ displaystyle \ dim L ^ {\ perp} = \ dim Lr}   wherer {\ displaystyle r}   - rank of bilinear formF {\ displaystyle F}   .

Convert the bilinear matrix by changing the base

The matrix representing the bilinear form in the new basis is connected with the matrix representing it in the old basis through the matrix, the inverse of the transition matrix to the new basis (Jacobi matrix), through which the coordinates of the vectors are transformed.

In other words, if the coordinates of the vector in the old basisXi {\ displaystyle X ^ {i}}   expressed through coordinates in newxi {\ displaystyle x ^ {i}}   through the matrixβ {\ displaystyle \ beta}  Xi=Σβjixj {\ displaystyle X ^ {i} = \ sum \ beta _ {j} ^ {i} x ^ {j}}   or matrix recordingX=βx {\ displaystyle X = \ beta x}   then bilinear formF {\ displaystyle F}   on any vectorsx {\ displaystyle x}   andy {\ displaystyle y}   will be written as

F(x,y)=Σi,jFijXiYj=Σi,j,k,mFijβkiβmjxkym{\ displaystyle F (x, \, y) = \ sum _ {i, j} F_ {ij} X ^ {i} Y ^ {j} = \ sum _ {i, j, k, m} F_ {ij } \ beta _ {k} ^ {i} \ beta _ {m} ^ {j} x ^ {k} y ^ {m}}   ,

that is, the components of the matrix representing the bilinear form in the new basis will be:

fkm=Σi,jFijβkiβmj{\ displaystyle f_ {km} = \ sum _ {i, j} F_ {ij} \ beta _ {k} ^ {i} \ beta _ {m} ^ {j}}   ,

or, in matrix notation:

f=βTFβ{\ displaystyle f = \ beta ^ {T} F \ beta}   ,
β=α-one{\ displaystyle \ beta = \ alpha ^ {- 1}}   whereα {\ displaystyle \ alpha}   - direct coordinate transformation matrixx=αX {\ displaystyle x = \ alpha X}   .

Relationship with tensor products and the Hom functor

From the universal property of the tensor product, it follows that the bilinear forms on V are in one-to-one correspondence with the setHom(V⊗V,k) {\ displaystyle {\ text {Hom}} (V \ otimes V, k)}   where k is the main field.

Since the tensor product functor and the Hom functor are conjugate ,Hom(V⊗V,k)≅Hom(V,Hom(V,k)) {\ displaystyle {\ text {Hom}} (V \ otimes V, k) \ cong {\ text {Hom}} (V, {\ text {Hom}} (V, k))}   , that is, the bilinear form corresponds to the linear mapping ofV {\ displaystyle V}   in dual spaceV∗ {\ displaystyle V ^ {*}}   . This correspondence can be carried out in two ways (since there are two functors of the tensor product — with a fixed left argument and with a fixed right); they are often designated as

Bone(v)=B(v,⋅){\ displaystyle B_ {1} ({\ mathsf {v}}) = B ({\ mathsf {v}}, \ cdot)}  

B2(v)=B(⋅,v){\ displaystyle B_ {2} ({\ mathsf {v}}) = B (\ cdot, {\ mathsf {v}})}   .

See also

  • Quadratic form
  • Bilinear operation
  • Bilinear transform

Literature

  • Maltsev A. I. Basics of linear algebra. - M .: Science, 1975.
  • Gelfand I.M. Lectures on linear algebra. - M .: Science, 1971.
  • Faddeev DK Lectures on algebra. M .: Science, 1984.
  • Kostrikin A.I. Introduction to Algebra, Moscow: Nauka, 1977.
  • Beklemishev D.V. Analytic geometry and linear algebra. - M .: Higher. Shk., 1998. - 320 p.
  • Gelfand IM , Linear Algebra . Lecture course.
  • Shafarevich I.R. , Remizov A.O. Linear Algebra and Geometry, - Fizmatlit, Moscow, 2009.
Source - https://ru.wikipedia.org/w/index.php?title=Bilinear_form&oldid=99902116


More articles:

  • Peace (lake)
  • PW Andromeda
  • Nekrasovka (Bakhchisaray district)
  • Bank of France
  • OpenEmbedded
  • Dactyloceras lucina
  • Plasma Lens
  • Black Diggers
  • Search Results Page
  • Gurzuf Park

All articles

Clever Geek | 2019