Clever Geek Handbook
📜 ⬆️ ⬇️

The Kolmogorov-Chapman equation

Kolmogorov - Chapman equation for a one-parameter family of continuous linear operatorsP(t),t>0 {\ displaystyle \ mathbf {P} (t), \; t> 0} {\ displaystyle \ mathbf {P} (t), \; t> 0} in a topological vector space expresses a semigroup property :

P(t+s)=P(t)P(s).{\ displaystyle \ mathbf {P} (t + s) = \ mathbf {P} (t) \ mathbf {P} (s).} {\ displaystyle \ mathbf {P} (t + s) = \ mathbf {P} (t) \ mathbf {P} (s).}

Most often, this term is used in the theory of homogeneous Markov random processes , whereP(t),t≥0 {\ displaystyle \ mathbf {P} (t), \; t \ geq 0} {\ displaystyle \ mathbf {P} (t), \; t \ geq 0} - an operator that transforms the probability distribution at the initial moment of time into the probability distribution at the moment of timet {\ displaystyle t} t (P(0)=one {\ displaystyle \ mathbf {P} (0) = \ mathbf {1}} {\ displaystyle \ mathbf {P} (0) = \ mathbf {1}} )

For inhomogeneous processes, two-parameter families of operators are consideredP(t,h),h>t>0 {\ displaystyle \ mathbf {P} (t, h), \; h> t> 0} {\ displaystyle \ mathbf {P} (t, h), \; h> t> 0} transforming the probability distribution at timet>0 {\ displaystyle t> 0} {\ displaystyle t> 0} in the probability distribution at timeh>t>0. {\ displaystyle h> t> 0.} {\ displaystyle h> t> 0.} For them, the Kolmogorov – Chapman equation has the form

P(t,s)=P(t,h)P(h,s),s>h>t>0.{\ displaystyle \ mathbf {P} (t, s) = \ mathbf {P} (t, h) \ mathbf {P} (h, s), \; s> h> t> 0.} {\ displaystyle \ mathbf {P} (t, s) = \ mathbf {P} (t, h) \ mathbf {P} (h, s), \; s> h> t> 0.}

For discrete time systems, the parameterst,h,s {\ displaystyle t, h, s} {\ displaystyle t, h, s} take natural values .

Forward and reverse Kolmogorov equations

Formally differentiating the Kolmogorov – Chapman equation with respect tos {\ displaystyle s} s ats=0 {\ displaystyle s = 0} s=0 we obtain the direct Kolmogorov equation :

dP(t)dt=P(t)Q,{\ displaystyle {\ frac {d \ mathbf {P} (t)} {dt}} = \ mathbf {P} (t) \ mathbf {Q},} {\frac  {d{\mathbf  {P}}(t)}{dt}}={\mathbf  {P}}(t){\mathbf  {Q}},

Where

Q=limh→0P(h)-oneh.{\ displaystyle \ mathbf {Q} = \ lim _ {h \ to 0} {\ frac {\ mathbf {P} (h) - \ mathbf {1}} {h}}.} {\displaystyle \mathbf {Q} =\lim _{h\to 0}{\frac {\mathbf {P} (h)-\mathbf {1} }{h}}.}

Formally differentiating the Kolmogorov-Chapman equation with respect tot {\ displaystyle t} t att=0 {\ displaystyle t = 0} t=0 we obtain the inverse Kolmogorov equation

dP(t)dt=QP(t).{\ displaystyle {\ frac {d \ mathbf {P} (t)} {dt}} = \ mathbf {Q} \ mathbf {P} (t).} {\frac  {d{\mathbf  {P}}(t)}{dt}}={\mathbf  {Q}}{\mathbf  {P}}(t).

It must be emphasized that for infinite-dimensional spaces the operatorQ {\ displaystyle \ mathbf {Q}} {\mathbf  {Q}} is no longer necessarily continuous, and may not be defined everywhere, for example, to be a differential operator in the distribution space.

Examples

We consider homogeneous Markov random processes inRn, {\ displaystyle \ mathbb {R} ^ {n},}   for which the transition probability operatorP(t) {\ displaystyle \ mathbf {P} (t)}   defined by transition densityp(t,x,y) {\ displaystyle p (t, x, y)}   : probability of transition from areaU {\ displaystyle U}   to the areaW {\ displaystyle W}   duringt {\ displaystyle t}   there is∫Udx∫Vdyp(t,x,y) {\ displaystyle \ int \ limits _ {U} dx \, \ int \ limits _ {V} dy \, p (t, x, y)}   . The Kolmogorov – Chapman equation for densities has the form:

p(t+s,x,y)=∫Rnp(t,x,z)p(s,z,y)dz.{\ displaystyle p (t + s, x, y) = \ int \ limits _ {\ mathbb {R} ^ {n}} p (t, x, z) p (s, z, y) \, dz. }  

Att>0,t→0 {\ displaystyle t> 0, \, t \ to 0}   transition densityp(t,x,y) {\ displaystyle p (t, x, y)}   tends to a δ-function (in the sense of the weak limit of generalized functions ):limt→0p(t,x,y)=δ(x-y) {\ displaystyle \ lim _ {t \ to 0} p (t, x, y) = \ delta (xy)}   . It means thatlimt→0P(t)=one. {\ displaystyle \ lim _ {t \ to 0} \ mathbf {P} (t) = \ mathbf {1}.}   Suppose there is a limit (also a generalized function)

q(x,y)=limh→0p(h,x,y)-δ(x-y)h.{\ displaystyle q (x, y) = \ lim _ {h \ to 0} {\ frac {p (h, x, y) - \ delta (xy)} {h}}.}  

Then the operatorQ {\ displaystyle \ mathbf {Q}}   acts on functionsf(x) {\ displaystyle f (x)}   defined onRn, {\ displaystyle \ mathbb {R} ^ {n},}   as(Qf)(x)=∫Rnq(x,y)f(y)dy, {\ displaystyle (\ mathbf {Q} f) (x) = \ int \ limits _ {\ mathbb {R} ^ {n}} q (x, y) f (y) \, dy,}   and the direct Kolmogorov equation takes the form

∂p(t,x,y)∂t=∫Rnp(t,x,z)q(z,y)dz,{\ displaystyle {\ frac {\ partial p (t, x, y)} {\ partial t}} = \ int \ limits _ {\ mathbb {R} ^ {n}} p (t, x, z) q (z, y) \, dz,}  

and the inverse Kolmogorov equation

∂p(t,x,y)∂t=∫Rnq(x,z)p(t,z,y)dz.{\ displaystyle {\ frac {\ partial p (t, x, y)} {\ partial t}} = \ int \ limits _ {\ mathbb {R} ^ {n}} q (x, z) p (t , z, y) \, dz.}  

Let the operatorQ {\ displaystyle \ mathbf {Q}}   - second-order differential operator with continuous coefficients:

(Qf)=one2∑i,jaij(x)∂2f∂xi∂xj+∑jbj(x)∂f∂xj.{\ displaystyle (\ mathbf {Q} f) = {\ frac {1} {2}} \ sum _ {i, j} a ^ {ij} (x) {\ frac {\ partial ^ {2} f} {\ partial x ^ {i} \ partial x ^ {j}}} + \ sum _ {j} b ^ {j} (x) {\ frac {\ partial f} {\ partial x ^ {j}}} .}  

(it means thatq(x,y) {\ displaystyle q (x, y)}   there is a linear combination of the first and second derivativesδ(x-y) {\ displaystyle \ delta (xy)}   with continuous coefficients). Matrixaij {\ displaystyle a ^ {ij}}   symmetrical. Let it be positive definite at each point ( diffusion ). The direct Kolmogorov equation has the form

∂p(t,x,y)∂t=one2∑i,j∂2∂yi∂yj(aij(y)p(t,x,y))-∑j∂∂yj(bj(y)p(t,x,y)).{\ displaystyle {\ frac {\ partial p (t, x, y)} {\ partial t}} = {\ frac {1} {2}} \ sum _ {i, j} {\ frac {\ partial ^ {2}} {\ partial y ^ {i} \ partial y ^ {j}}} (a ^ {ij} (y) p (t, x, y)) - \ sum _ {j} {\ frac { \ partial} {\ partial y ^ {j}}} (b ^ {j} (y) p (t, x, y)).}  

This equation is called the Fokker-Planck equation . Vectorbj {\ displaystyle b ^ {j}}   in the physical literature is called the drift vector, and the matrixaij {\ displaystyle a ^ {ij}}   - diffusion tensor The inverse Kolmogorov equation in this case

∂p(t,x,y)∂t=one2∑i,jaij(x)∂2∂xi∂xjp(t,x,y)+∑jbj(x)∂∂xjp(t,x,y).{\ displaystyle {\ frac {\ partial p (t, x, y)} {\ partial t}} = {\ frac {1} {2}} \ sum _ {i, j} a ^ {ij} (x ) {\ frac {\ partial ^ {2}} {\ partial x ^ {i} \ partial x ^ {j}}} p (t, x, y) + \ sum _ {j} b ^ {j} ( x) {\ frac {\ partial} {\ partial x ^ {j}}} p (t, x, y).}  

See also

  • Markov chain
  • Fokker - Planck equation

Literature

  • Wentzel A.D. , A course in the theory of random processes. - M .: Nauka, 1996 .-- 400 p.
Source - https://ru.wikipedia.org/w/index.php?title=Kolmogorov__ equation_Chapman&oldid = 101037660


More articles:

  • M113
  • Pelion
  • Kirill (Sakharov)
  • Maslyakov, Alexander Vasilievich
  • The Battle of Wilhelmstal
  • Glu Mobile
  • Ave Lalleman, Frederick Christian Benedict
  • The Problem with Popplers
  • Kaporali, Rodolfo
  • Norvig, Peter

All articles

Clever Geek | 2019