Clever Geek Handbook
📜 ⬆️ ⬇️

Bernstein polynomial

In computational mathematics, Bernstein polynomials are algebraic polynomials , which are a linear combination of Bernstein basis polynomials . [1] [2]

A stable algorithm for calculating polynomials in the form of Bernstein is de Castelgio's algorithm .

Bernstein polynomials were described by Sergei Nathanovich Bernstein in 1912 and used by him in constructive proof of Weierstrass's approximation theorem . With the development of computer graphics , the Bernstein polynomials on the interval x ∈ [0, 1] began to play an important role in the construction of Bezier curves .

Content

Definition

( n + 1) Bernstein basis polynomials of degree n are given by

bk,n(x)=(nk)xk(one-x)n-k,k=0,...,n.{\ displaystyle b_ {k, n} (x) = {\ binom {n} {k}} x ^ {k} (1-x) ^ {nk}, \ qquad k = 0, \ ldots, n.}  

Where(nk) {\ displaystyle {\ binom {n} {k}}}   - Binomial coefficient .

Bernstein basis polynomials of degree n form a basis for linear spaceΠn {\ displaystyle \ Pi _ {n}}   polynomials of degree n .

Linear combination of Bernstein basis polynomials

Bn(f;x)=Bn(x)=Σk=0nf(kn)bk,n(x){\ displaystyle B_ {n} (f; x) = B_ {n} (x) = \ sum _ {k = 0} ^ {n} f \ left ({\ frac {k} {n}} \ right) b_ {k, n} (x)}  

is called a Bernstein polynomial or, more precisely , a Bernstein-shaped polynomial of degree n . Coefficientsf(kn) {\ displaystyle f \ left ({\ frac {k} {n}} \ right)}   are called Bernstein coefficients or Bezier coefficients .

Examples

Here are some basic Bernstein polynomials:

b0,0(x)=one{\ displaystyle b_ {0,0} (x) = 1}  
b0,one(x)=one-x{\ displaystyle b_ {0,1} (x) = 1-x}  
bone,one(x)=x{\ displaystyle b_ {1,1} (x) = x}  
b0,2(x)=(one-x)2{\ displaystyle b_ {0,2} (x) = (1-x) ^ {2}}  
bone,2(x)=2x(one-x){\ displaystyle b_ {1,2} (x) = 2x (1-x)}  
b2,2(x)=x2.{\ displaystyle b_ {2,2} (x) = x ^ {2} \.}  

Properties

Differentiation

bk,n′(x)=nbk,n-one(x)+nbk-one,n-one(x){\ displaystyle b '_ {k, n} (x) = n \, b_ {k, n-1} (x) + n \, b_ {k-1, n-1} (x)}  

bk,n(l)(x)=n!(n-l)!Σj=0l(lj)bk-j,n-l(x){\ displaystyle b_ {k, n} ^ {(l)} (x) = {\ frac {n!} {(nl)!}} \ sum _ {j = 0} ^ {l} {\ binom {l } {j}} b_ {kj, nl} (x)}  

Lemmas about moments

Σk=0nbk,n(x)=one{\ displaystyle \ sum _ {k = 0} ^ {n} b_ {k, n} (x) = 1}   for any n and x , sinceΣk=0nbk,n(x)=(x+one-x)n=onen {\ displaystyle \ sum _ {k = 0} ^ {n} b_ {k, n} (x) = (x + 1-x) ^ {n} = 1 ^ {n}}  

Σk=0nbk,n(x)(x-k/n)=0{\ displaystyle \ sum _ {k = 0} ^ {n} b_ {k, n} (x) (xk / n) = 0}   for any n and x

Σk=0nbk,n(x)(x-k/n)2=x(one-x)/n{\ displaystyle \ sum _ {k = 0} ^ {n} b_ {k, n} (x) (xk / n) ^ {2} = x (1-x) / n}   for any n and x

Approximation of continuous functions

See also

  • Bezier curve
  • Interpolation by algebraic polynomials
  • Newton's Formula
  • Lagrange polynomial

Notes

  1. ↑ Bernstein, S.N. Collected Works. - M. , 1952. - T. 1. - p. 105-106.
  2. ↑ Bernstein, S.N. Collected Works. - M. , 1954. - T. 3. - S. 310-348.
Source - https://ru.wikipedia.org/w/index.php?title=Bernstein_Multiply_oldid=92219757


More articles:

  • Leonid Moiseev
  • Aperture and Clausura
  • Ostroumova-Lebedeva, Anna Petrovna
  • Bluebird
  • LBV 1806-20
  • Kasman, Jacob Aronovich
  • AES + F
  • Prussian
  • Aardvark
  • DTO

All articles

Clever Geek | 2019