Clever Geek Handbook
📜 ⬆️ ⬇️

Fubini's Little Theorem

Fubini's Small Theorem is a term-by-term differentiation theorem for a series of monotone functions , which states:

A convergent series of monotone (non-decreasing) functions:

∑n=one∞Fn(x)=F(x)(one){\ displaystyle \ sum _ {n = 1} ^ {\ infty} F_ {n} (x) = F (x) \ qquad (1)} \ sum _ {{n = 1}} ^ {\ infty} F_ {n} (x) = F (x) \ qquad (1)

almost everywhere admits termwise differentiation:

∑n=one∞Fn′(x)=F′(x).{\ displaystyle \ sum _ {n = 1} ^ {\ infty} F_ {n} '(x) = F' (x).} \ sum _ {{n = 1}} ^ {\ infty} F_ {n} '(x) = F' (x).

Proof

Without loss of generality, all functions can be consideredF′(x) {\ displaystyle F '(x)}   non-negative and equal to zero forx=a {\ displaystyle x = a}   ; otherwise you can replaceFn(x) {\ displaystyle F_ {n} (x)}   onFn(x)-Fn(a) {\ displaystyle F_ {n} (x) -F_ {n} (a)}   . The sum of a number of non-decreasing functions is, of course, a non-decreasing function.

Consider the setE {\ displaystyle E}   full measure on which all existFn′(x) {\ displaystyle F_ {n} '(x)}   andF′(x) {\ displaystyle F '(x)}   . Atx⊂E {\ displaystyle x \ subset E}   and anyε {\ displaystyle \ varepsilon}   we have:

∑n=one∞[Fn(ε)-Fn(x)]ε-x=F(ε)-F(x)ε-x.{\ displaystyle {\ frac {\ sum \ limits _ {n = 1} ^ {\ infty} [F_ {n} (\ varepsilon) -F_ {n} (x)]} {\ varepsilon -x}} = { \ frac {F (\ varepsilon) -F (x)} {\ varepsilon -x}}.}  

Since the terms on the left are non-negative, for anyN {\ displaystyle N}  

∑n=oneN[Fn(ε)-Fn(x)]ε-x⩽F(ε)-F(x)ε-x.{\ displaystyle {\ frac {\ sum \ limits _ {n = 1} ^ {N} [F_ {n} (\ varepsilon) -F_ {n} (x)]} {\ varepsilon -x}} \ leqslant { \ frac {F (\ varepsilon) -F (x)} {\ varepsilon -x}}.}  

Passing to the limit atε→x {\ displaystyle \ varepsilon \ to x}   we get:

∑n=oneNFn′(x)⩽F′(x),{\ displaystyle \ sum _ {n = 1} ^ {N} F_ {n} '(x) \ leqslant F' (x),}  

where, rushingN {\ displaystyle N}   to∞ {\ displaystyle \ infty}   and considering that everythingFn′(x) {\ displaystyle F_ {n} '(x)}   non-negative, we find:

∑n=one∞Fn′(x)⩽F′(x).(2){\ displaystyle \ sum _ {n = 1} ^ {\ infty} F_ {n} '(x) \ leqslant F' (x). \ qquad (2)}  

We show that in reality for almost allx {\ displaystyle x}   there is an equal sign. Find for a givenk {\ displaystyle k}   private amountSnk(x) {\ displaystyle S_ {nk} (x)}   row (1) for which:

0⩽F(b)-Snk(b)≺one2k.(k=one,2,...){\ displaystyle 0 \ leqslant F (b) -S_ {nk} (b) \ prec {\ frac {1} {2 ^ {k}}}. \ quad (k = 1, \; 2, \; \ ldots )}  

Since the difference

F(x)-Snk(x)=∑j≻nkFj(x){\ displaystyle F (x) -S_ {nk} (x) = \ sum _ {j \ succ nk} F_ {j} (x)}   - non-decreasing function, then for allx {\ displaystyle x}  
0⩽F(x)-Snk(x)≺one2k{\ displaystyle 0 \ leqslant F (x) -S_ {nk} (x) \ prec {\ frac {1} {2 ^ {k}}}}  

and therefore a number of non-decreasing functions

∑k=one∞[F(x)-Snk(x)]{\ displaystyle \ sum _ {k = 1} ^ {\ infty} [F (x) -S_ {nk} (x)]}  

converges (even evenly) over the entire segmenta⩽x⩽b {\ displaystyle a \ leqslant x \ leqslant b}   .

But then, according to what was proved, a number of derivatives converge almost everywhere. Common member of this seriesF′(x)-Snk′(x) {\ displaystyle F '(x) -S_ {nk}' (x)}   tends to zero almost everywhere, and, therefore, almost everywhereSnk′(x)→F′(x) {\ displaystyle S_ {nk} '(x) \ to F' (x)}   . But if in inequality (2) there was a sign< {\ displaystyle <}   , then no sequence of partial sums could have a limitF′(x) {\ displaystyle F '(x)}   . Therefore, in inequality (2) for almost everyx {\ displaystyle x}   there should be an equal sign, which we argued.


Source - https://ru.wikipedia.org/w/index.php?title=Maly_Fubini_theorema&oldid=61010686


More articles:

  • Asbestos Cement Slate
  • Church of St. Panteleimon (Thessaloniki)
  • Suleymanov, Nazim Hajibaba oglu
  • Mars Ionosphere
  • Massage
  • Stallwitz, Walter
  • Prospect (investment company)
  • McDowell, Irwin
  • Oryol-Bryansk operation
  • Lithuanian Life Guard Regiment

All articles

Clever Geek | 2019