Clever Geek Handbook
📜 ⬆️ ⬇️

Legendre Transformation

Legendre transform for a given functionf(x) {\ displaystyle f (x)} f (x) Is the construction of a functionf∗(p) {\ displaystyle f ^ {*} (p)} {\ displaystyle f ^ {*} (p)} dual to her according to Jung. If the original function was defined on a vector spaceV {\ displaystyle V} V , its Legendre transformation will be a function defined on the adjoint spaceV∗ {\ displaystyle V ^ {*}} V ^ * , i.e., on the space of linear functionals on the spaceV {\ displaystyle V} V .

Motivation

Possible motivation can be expressed as a less general definition. The Legendre transformation is such a replacement of a function and a variable in which the old derivative is taken as a new variable, and the old variable is taken as a new derivative.

Differential expression

df(x)=f′(x)dx{\ displaystyle df (x) = f ^ {\ prime} (x) dx} {\displaystyle df(x)=f^{\prime }(x)dx}

due to the fact thatd(xf′)=f′dx+xdf′ {\ displaystyle d (xf ^ {\ prime}) = f ^ {\ prime} dx + xdf ^ {\ prime}} {\displaystyle d(xf^{\prime })=f^{\prime }dx+xdf^{\prime }} can be written as

d(xf′-f)=xdf′.{\ displaystyle d (xf ^ {\ prime} -f) = xdf ^ {\ prime}.} {\displaystyle d(xf^{\prime }-f)=xdf^{\prime }.}

If we now accept that

F=xf′-f,y=f′(x),{\ displaystyle F = xf ^ {\ prime} -f ~, ~~ y = f ^ {\ prime} (x),} {\displaystyle F=xf^{\prime }-f~,~~y=f^{\prime }(x),}

which is the transformation of Legendre(f,x)→(F,y) {\ displaystyle (f, x) \ to (F, y)} {\displaystyle (f,x)\to (F,y)} then

dF(y)=F′(y)dy,x=F′(y).{\ displaystyle dF (y) = F ^ {\ prime} (y) dy ~, ~ x = F ^ {\ prime} (y).} {\displaystyle dF(y)=F^{\prime }(y)dy~,~x=F^{\prime }(y).}

With this new variabley {\ displaystyle y} y equal to the old derivative, and the old variablex {\ displaystyle x} x equal to the new derivative:

y=f′(x),x=F′(y).{\ displaystyle y = f ^ {\ prime} (x) ~, ~ x = F ^ {\ prime} (y).} {\displaystyle y=f^{\prime }(x)~,~x=F^{\prime }(y).}

Definitions may differ in sign.F {\ displaystyle F} F . If the source variablesx {\ displaystyle x} x more than one, the Legendre transformation can be carried out on any subset of them.

Definition

Analytical Definition

Legendre conversion functionf {\ displaystyle f} f defined on a subsetM {\ displaystyle M} M vector spaceV {\ displaystyle V} V is called a functionf∗ {\ displaystyle f ^ {*}} {\displaystyle f^{*}} defined on a subsetM∗ {\ displaystyle M ^ {*}} M^* conjugate spaceV∗ {\ displaystyle V ^ {*}} V^* according to the formula

f∗(p)=supx∈M(⟨p,x⟩-f(x)),p∈M∗={p:supx∈M(⟨p,x⟩-f(x))<∞},{\ displaystyle f ^ {*} (p) = \ sup _ {x \ in M} (\ left \ langle p, x \ right \ rangle -f (x)), ~~ p \ in M ​​^ {*} = \ left \ {p: \ sup _ {x \ in M} (\ left \ langle p, x \ right \ rangle -f (x)) <\ infty \ right \},} {\displaystyle f^{*}(p)=\sup _{x\in M}(\left\langle p,x\right\rangle -f(x)),~~p\in M^{*}=\left\{p:\sup _{x\in M}(\left\langle p,x\right\rangle -f(x))<\infty \right\},}

Where⟨p,x⟩ {\ displaystyle \ left \ langle p, x \ right \ rangle}   Is the value of the linear functionalp {\ displaystyle p}   on vectorx {\ displaystyle x}   . In the case of a Hilbert space⟨p,x⟩ {\ displaystyle \ left \ langle p, x \ right \ rangle}   Is an ordinary scalar product. In the particular case of a differentiable function defined inRn {\ displaystyle {\ mathcal {R}} ^ {n}}   , the transition to the conjugate function is carried out according to the formulas

f∗(p)=⟨p,x⟩-f(x),p=∂f∂x=grad⁡f,{\ displaystyle f ^ {*} (p) = \ left \ langle p, x \ right \ rangle -f (x), ~~~ p = {\ frac {\ partial f} {\ partial x}} = \ operatorname {grad} f,}  

moreoverx {\ displaystyle x}   need to be expressed throughp {\ displaystyle p}   from the second equation.

Geometric meaning

For convex functionf(x) {\ displaystyle f (x)}   her chartepi {\ displaystyle epi}  φ={y|y≥f(x)} {\ displaystyle \ varphi = \ {y | y \ geq f (x) \}}   there is a convex closed set whose boundary is a graph of the functionf(x) {\ displaystyle f (x)}   . The set of supporting hyperplanes to the function epigraphf(x) {\ displaystyle f (x)}   there is a natural domain of definition by its Legendre transformationf∗(p). {\ displaystyle f ^ {*} (p).}   If ap {\ displaystyle p}   - reference hyperplane (in our case, tangent) to the epigraph, it intersects the axisy {\ displaystyle y}   at some single point. Hery {\ displaystyle y}   -coordinate taken with a minus sign is the value of the functionf∗(p) {\ displaystyle f ^ {*} (p)}   .

Conformityx→p {\ displaystyle x \ to p}   defined uniquely in the region where the functionf(x) {\ displaystyle f (x)}   differentiable . Thenp {\ displaystyle p}   - tangent hyperplane to the graphf(x) {\ displaystyle f (x)}   at the pointx {\ displaystyle x}   . Reverse matchp→x {\ displaystyle p \ to x}   defined uniquely if and only if the functionf(x) {\ displaystyle f (x)}   strictly convex. In this casex {\ displaystyle x}   - the only point of contact of the reference hyperplanep {\ displaystyle p}   with function graphf(x). {\ displaystyle f (x).}  

If the functionf(x) {\ displaystyle f (x)}   differentiable and strictly convex, the correspondence is definedp(x)↔df(x), {\ displaystyle p (x) \ leftrightarrow df (x),}   matching hyperplanesp {\ displaystyle p}   function differentialf(x) {\ displaystyle f (x)}   at the pointx {\ displaystyle x}   . This correspondence is one-to-one and allows one to transfer the domain of definition of the functionf∗(p) {\ displaystyle f ^ {*} (p)}   into the space of covectorsV∗, {\ displaystyle V ^ {*},}   which are function differentialsf(x) {\ displaystyle f (x)}   .

In the general case of an arbitrary non-convex function, the geometric meaning of the Legendre transform is preserved. By the support principle, the convex hull of the epigraphφ {\ displaystyle \ varphi}   is the intersection of half-spaces defined by all supporting hyperplanes; therefore, for the Legendre transform, only the convex hull of the overgraph is essentialφ {\ displaystyle \ varphi}   . Thus, the case of an arbitrary function easily reduces to the case of convex. A function does not even have to be differentiable or continuous; its Legendre transformation will still be a convex lower semicontinuous function.

Properties

  1. Fenchel-Moreau theorem : for a proper convex lower semicontinuous function f defined on a reflexive space, the Legendre transform is involutive , i.e.f∗∗(x)=f(x) {\ displaystyle f ^ {**} (x) = f (x)}   . It is easy to see that if the convex closure of f is g , then f * = g *. It follows that for a non-convex function whose convex closure is an eigenfunction,
    f∗∗(x)=co¯f(x){\ displaystyle f ^ {**} (x) = {\ overline {\ operatorname {co}}} f (x)}   ,
    Whereco¯f {\ displaystyle {\ overline {\ operatorname {co}}} f}   Is the convex closure of the function f .
  2. Directly from the analytical definition follows the Young - Fenchel inequality :
    f(x)+f∗(p)≥⟨p,x⟩{\ displaystyle f (x) + f ^ {*} (p) \ geq \ left \ langle p, x \ right \ rangle}   , and equality is achieved only if p = F '(x).
    (Often , Young's inequality is a special case of this inequality for the function F (x) =xa/a {\ displaystyle x ^ {a} / a}   , a> 1).
  3. In the calculus of variations (and the Lagrangian mechanics based on it), the Legendre transformation is usually applied to the action LagrangiansL(t,x,x˙) {\ displaystyle L (t, x, {\ dot {x}})}   by variablex˙ {\ displaystyle {\ dot {x}}}   . The Hamiltonian of the action H (t, x, p) becomes the image of the Lagrangian, and the Euler-Lagrange equations for optimal trajectories are transformed into Hamilton equations.
  4. Using the fact thatp=∇xf {\ displaystyle p = \ nabla _ {x} f}   , it is easy to show that∇pf∗(p)=-x {\ displaystyle \ nabla _ {p} f ^ {*} (p) = - x}  

Examples

Power Function

Consider the Legendre transform of a functionf(x)=xn {\ displaystyle f (x) = x ^ {n}}   , (n>0 {\ displaystyle n> 0}   ,n≠one {\ displaystyle n \ neq 1}   ) defined onR+ {\ displaystyle \ mathbb {R ^ {+}}}   . In the case of even n, we can considerR {\ displaystyle \ mathbb {R}}   .

p(x)=dfdx=n⋅xn-one.{\ displaystyle p (x) = {\ frac {df} {dx}} = n \ cdot x ^ {n-1}.}  

From here we expressx=x(p) {\ displaystyle x = x (p)}   we get

x(p)=(pn)onen-one.{\ displaystyle x (p) = \ left ({\ frac {p} {n}} \ right) ^ {\ frac {1} {n-1}}.}  

Total we get the Legendre transform for a power function:

f∗(p)=px-f(x)=(pn)nn-one⋅(n-one).{\ displaystyle f ^ {*} (p) = px-f (x) = \ left ({\ frac {p} {n}} \ right) ^ {\ frac {n} {n-1}} \ cdot (n-1).}  

It is easy to verify that the repeated Legendre transform gives the original functionf(x) {\ displaystyle f (x)}   .

The function of many variables

Consider the function of many variables defined on the spaceRn {\ displaystyle \ mathbb {R} ^ {n}}   of the following form:

f(x)=⟨x,Ax⟩+c.{\ displaystyle f (x) = \ langle x, Ax \ rangle + c.}  

A{\ displaystyle A}   real, positive definite matrix,c {\ displaystyle c}   constant. First of all, we verify that the conjugate space on which the Legendre transform is defined coincides withRn {\ displaystyle \ mathbb {R} ^ {n}}   . To do this, we need to verify the existence of an extremum of the functionϕ=⟨p,x⟩-⟨x,Ax⟩-c {\ displaystyle \ phi = \ langle p, x \ rangle - \ langle x, Ax \ rangle -c}  

∇xϕ=p-2Ax,{\ displaystyle \ nabla _ {x} \ phi = p-2Ax,}  
∇x∇xϕ=-2A.{\ displaystyle \ nabla _ {x} \ nabla _ {x} \ phi = -2A.}  

Due to the positive definiteness of the matrixA {\ displaystyle A}   , we get that the extremum point is the maximum. So for everyonep {\ displaystyle p}   there is a supremum. The calculation of the Legendre transform is carried out directly:

f∗(p)=onefour⟨p,A-onep⟩-c.{\ displaystyle f ^ {*} (p) = {\ frac {1} {4}} \ langle p, A ^ {- 1} p \ rangle -c.}  

Applications

Hamiltonian mechanics.

In Lagrangian mechanics, a system is described by the Lagrange function. For a typical task, the Lagrange function is as follows:

L(q,u)=one2⟨u,Mu⟩-V(q),{\ displaystyle L (q, u) = {\ frac {1} {2}} \ langle u, Mu \ rangle -V (q),}  

(q,u)∈Rn×Rn{\ displaystyle (q, u) \ in \ mathbb {R} ^ {n} \ times \ mathbb {R} ^ {n}}   , with standard, Euclidean scalar product. MatrixM {\ displaystyle M}   considered valid, positive definite. In the case when the Lagrangian is not degenerate in velocity, i.e.

p=∇uL(q,u)≠0,{\ displaystyle p = \ nabla _ {u} L (q, u) \ neq 0,}  

we can make the Legendre transformation in velocities and get a new function called the Hamiltonian:

H(p,q)=pq′-L=one2⟨p,M-onep⟩+V(q).{\ displaystyle H (p, q) = pq'-L = {\ frac {1} {2}} \ langle p, M ^ {- 1} p \ rangle + V (q).}  

Thermodynamics

In thermodynamics, very different thermodynamic functions are very common, the differential of which in the most general case looks like:

dL=Xdx+Ydy+Zdz+...{\ displaystyle dL = Xdx + Ydy + Zdz + ...}  

For example, the differential for internal energy is as follows:

dE=TdS-PdV.{\ displaystyle dE = TdS-PdV.}  

Energy is presented here as a function of variablesS {\ displaystyle S}   ,V {\ displaystyle V}   . Such variables are called natural. For example, free energy is obtained as Legendre transformations of internal energy:

F=E-TS,{\ displaystyle F = E-TS,}  
dF=-SdT-PdV.{\ displaystyle dF = -SdT-PdV.}  

In general, if we want to move from a functionL=L(x,y,z,...) {\ displaystyle L = L (x, y, z, ...)}   to functionL=L(X,y,z,...) {\ displaystyle L = L (X, y, z, ...)}   , then you should do the Legendre transformation:

L(X,y,z,...)=L-xX,{\ displaystyle L (X, y, z, ...) = L-xX,}  
dL(X,y,z,...)=-xdX+Ydy+Zdz+...{\ displaystyle dL (X, y, z, ...) = - xdX + Ydy + Zdz + ...}  

Field theory. Functional Legendre Transformation.

In quantum field theory, the Legendre functional transformation is very often used. The initial object is the connected Green functions , which are denoted byW(A) {\ displaystyle W (A)}   whereA {\ displaystyle A}   - some external fields. The Legendre transformation over field A is the following function [1] :

Γ(α)=W(A(α))-∫dx⋅αA.{\ displaystyle \ Gamma {(\ alpha)} = W (A (\ alpha)) - \ int {dx \ cdot \ alpha A}.}  

The sign of integration is usually not written.α {\ displaystyle \ alpha}   defined by the following expression [1] :

α(x)=δWδA(x),{\ displaystyle \ alpha (x) = {\ frac {\ delta {W}} {\ delta {A (x)}}},}  

δ{\ displaystyle \ delta}   means the variational derivative . Using the property of the variational derivative, it is easy to derive the following relationW {\ displaystyle W}   andΓ {\ displaystyle \ Gamma}   . Really:

δ(x-y)=δA(x)δA(y)=∫dzδA(x)δα(z)δα(z)δA(y)=-∫dzδ2Γδα(x)δα(z)δ2WδA(z)δA(y).{\ displaystyle \ delta (xy) = {\ frac {\ delta {A (x)}} {\ delta {A (y)}}} = \ int {dz {\ frac {\ delta {A (x)} } {\ delta {\ alpha (z)}}} {\ frac {\ delta {\ alpha (z)}} {\ delta {A (y)}}} = - \ int {dz {\ frac {\ delta ^ {2} \ Gamma} {\ delta \ alpha (x) \ delta \ alpha (z)}} {\ frac {\ delta ^ {2} W} {\ delta A (z) \ delta A (y) }}}.}  

In other words, functionalsW2=δ2WδA(z)δA(y) {\ displaystyle W_ {2} = {\ frac {\ delta ^ {2} W} {\ delta A (z) \ delta A (y)}}}   andΓ2=δ2Γδα(x)δα(z) {\ displaystyle \ Gamma _ {2} = {\ frac {\ delta ^ {2} \ Gamma} {\ delta \ alpha (x) \ delta \ alpha (z)}}}   , up to a sign, are inverse to each other. Symbolically, this is written as follows:

W2⋅Γ2=-one.{\ displaystyle W_ {2} \ cdot \ Gamma _ {2} = - 1.}  

Notes

  1. ↑ 1 2 Vasiliev A.N. Functional methods in quantum field theory and statistics. - Leningrad, 1976 .-- S. 81 .-- 295 p.

Literature

  • Polovinkin E. S, Balashov M. V. Elements of convex and strongly convex analysis. - M .: FIZMATLIT, 2004 .-- 416 p. - ISBN 5-9221-0499-3 .
  • Vasiliev A. N. Functional methods of quantum field theory and statistics. " —1976. - 295 p.
Source - https://ru.wikipedia.org/w/index.php?title= Legendre Transformation&oldid = 101105754


More articles:

  • Brandywine Battle
  • Sticker
  • Olympic (peninsula)
  • Direct Name
  • ScrollKeeper
  • Zverev, Grigory Alexandrovich
  • Pigs
  • Black Dog Petersburg
  • Vyazma (station)
  • Arabic Nightmare

All articles

Clever Geek | 2019