Clever Geek Handbook
📜 ⬆️ ⬇️

Gegenbauer Transformation

Gegenbauer Transformation - Integral TransformationT{F(t)} {\ displaystyle T \ left \ {F (t) \ right \}} T \ left \ {F (t) \ right \} the functionsF(t) {\ displaystyle F (t)} F (t) :

T{F(t)}=∫-one+one(one-t2)ρ-one/2Cnρ(t)F(t)dt=fnρ,{\ displaystyle T \ left \ {F (t) \ right \} = \ int \ limits _ {- 1} ^ {+ 1} (1-t ^ {2}) ^ {\ rho -1/2} C_ {n} ^ {\ rho} (t) F (t) dt = f_ {n} ^ {\ rho},} T \ left \ {F (t) \ right \} = \ int \ limits _ {{- 1}} ^ {{+ 1}} (1-t ^ {2}) ^ {{\ rho -1/2 }} C_ {n} ^ {\ rho} (t) F (t) dt = f_ {n} ^ {\ rho},
ρ>-one/2,n=0,one,2,...,{\ displaystyle \ rho> -1 / 2, ~ n = 0, ~ 1, ~ 2, ~ \ ldots,} \ rho> -1 / 2, ~ n = 0, ~ 1, ~ 2, ~ \ ldots,

WhereCnρ(t) {\ displaystyle C_ {n} ^ {\ rho} (t)} C_ {n} ^ {\ rho} (t) - Gegenbauer polynomials . If a function is expanded in a generalized Fourier series in terms of the Gegenbauer polynomials, then the inversion formula holds

F(t)=∑n=0onen!(n+ρ)Γ2(ρ)22ρ-oneπΓ(n+2ρ)Cnρ(t)fnρ(t),-one<t<one{\ displaystyle F (t) = \ sum _ {n = 0} ^ {\ mathcal {1}} {{n! (n + \ rho) \ Gamma ^ {2} (\ rho) 2 ^ {2 \ rho - 1}} \ over {\ pi \ Gamma (n + 2 \ rho)}} C_ {n} ^ {\ rho} (t) f_ {n} ^ {\ rho} (t), ~ -1 <t < one} F (t) = \ sum _ {{n = 0}} ^ {{\ mathcal {1}}} {{n! (N + \ rho) \ Gamma ^ {2} (\ rho) 2 ^ {{2 \ rho -1}}} \ over {\ pi \ Gamma (n + 2 \ rho)}} C_ {n} ^ {\ rho} (t) f_ {n} ^ {\ rho} (t), ~ -1 <t <1

Gegenbauer transform reduces a differential operation

R[F(t)]=(one-t2)F′′-(2ρ+one)tF′{\ displaystyle R \ left [F (t) \ right] = (1-t ^ {2}) F ^ {\ prime \ prime} - (2 \ rho +1) tF ^ {\ prime}} R \ left [F (t) \ right] = (1-t ^ {2}) F ^ {{\ prime \ prime}} - (2 \ rho +1) tF ^ {{\ prime}}

to algebraic

T{R[F(t)]}=-n(n+2ρ)fnρ{\ displaystyle T \ left \ {R \ left [F (t) \ right] \ right \} = - n (n + 2 \ rho) f_ {n} ^ {\ rho}} T \ left \ {R \ left [F (t) \ right] \ right \} = - n (n + 2 \ rho) f_ {n} ^ {\ rho}

Named in honor of the Austrian mathematician Leopold Gegenbauer (1849-1903).

Literature

  • Ditkin V.A., Prudnikov A.P. , in collection: The result of science. Ser. Maths. Mathematical analysis. 1966, M., 1967, p. 7-82.
Source - https://ru.wikipedia.org/w/index.php?title=Gegenbauer Transformation&oldid = 83895052


More articles:

  • Wavelet Compression
  • Tahanea
  • Theatanges
  • Klyazminskoye reservoir
  • Pakeryai
  • Sonata for piano number 2 (Chopin)
  • Chalon (county)
  • Time (album)
  • Paspatis, Konstantinos
  • Mostart, Jan

All articles

Clever Geek | 2019