Clever Geek Handbook
📜 ⬆️ ⬇️

Hellinger-Toeplitz theorem

The Hellinger – Toeplitz theorem is the result of a functional analysis establishing the boundedness of a symmetric operator in a Hilbert space .

Wording

Let beH {\ displaystyle H} H - Hilbert space . If for a linear operatorA:H→H {\ displaystyle A: \, H \ to H} {\displaystyle A:\,H\to H} there is a linear operatorB:H→H {\ displaystyle B: \, H \ to H} {\displaystyle B:\,H\to H} satisfying the condition(Ax,y)=(x,By)∀x,y∈H {\ displaystyle (Ax, y) = (x, By) \; \ forall x, y \ in H} {\displaystyle (Ax,y)=(x,By)\;\forall x,y\in H} then the operatorA {\ displaystyle A} A is limited .

In particular, any symmetric operator defined on the whole space is bounded, that is, a linear operator satisfying the condition(Ax,y)=(x,Ay)∀x,y∈H {\ displaystyle (Ax, y) = (x, Ay) \; \ forall x, y \ in H} {\displaystyle (Ax,y)=(x,Ay)\;\forall x,y\in H} .

Remarks

An essential condition of the theorem is the condition for the definiteness of the operator on the entire Hilbert space .

Consequences

  • Every symmetric operator defined on the entire Hilbert space is self-adjoint .
  • A self-adjoint unbounded operator cannot be defined on the entire Hilbert space .
Source - https://ru.wikipedia.org/w/index.php?title= Hellinger_ theorem_— Toeplitz&oldid = 85422971


More articles:

  • Battle Edward
  • Balance of power (geopolitics)
  • Mitino (electrodepo)
  • Black Sea Air
  • Orekhovsky World
  • Lonely sail whitens
  • First (lake, Chelyabinsk region)
  • Microsoft Telephony API
  • Plassenburg
  • Louis Barragan

All articles

Clever Geek | 2019