Clever Geek Handbook
📜 ⬆️ ⬇️

List of integrals of irrational functions

Below is a list of integrals ( primitive functions) of irrational functions . In the list, the additive integration constant is omitted everywhere.

Integrals with a root of a 2 + x 2

Everywhere below:r=a2+x2 {\ displaystyle r = {\ sqrt {a ^ {2} + x ^ {2}}}} r={\sqrt  {a^{2}+x^{2}}} .

∫rdx=one2(xr+a2ln⁡(x+r)){\ displaystyle \ int r \; dx = {\ frac {1} {2}} \ left (xr + a ^ {2} \, \ ln \ left ({x + r} \ right) \ right)} \int r\;dx={\frac  {1}{2}}\left(xr+a^{2}\,\ln \left({x+r}\right)\right)
∫r3dx=onefourxr3+oneeight3a2xr+3eightafourln⁡(x+ra){\ displaystyle \ int r ^ {3} \; dx = {\ frac {1} {4}} xr ^ {3} + {\ frac {1} {8}} 3a ^ {2} xr + {\ frac { 3} {8}} a ^ {4} \ ln \ left ({\ frac {x + r} {a}} \ right)} \int r^{3}\;dx={\frac  {1}{4}}xr^{3}+{\frac  {1}{8}}3a^{2}xr+{\frac  {3}{8}}a^{4}\ln \left({\frac  {x+r}{a}}\right)
∫rfivedx=one6xrfive+five24a2xr3+fivesixteenafourxr+fivesixteena6ln⁡(x+ra){\ displaystyle \ int r ^ {5} \; dx = {\ frac {1} {6}} xr ^ {5} + {\ frac {5} {24}} a ^ {2} xr ^ {3} + {\ frac {5} {16}} a ^ {4} xr + {\ frac {5} {16}} a ^ {6} \ ln \ left ({\ frac {x + r} {a}} \ right)} \int r^{5}\;dx={\frac  {1}{6}}xr^{5}+{\frac  {5}{24}}a^{2}xr^{3}+{\frac  {5}{16}}a^{4}xr+{\frac  {5}{16}}a^{6}\ln \left({\frac  {x+r}{a}}\right)
∫xr2n+onedx=r2n+32n+3{\ displaystyle \ int xr ^ {2n + 1} \; dx = {\ frac {r ^ {2n + 3}} {2n + 3}}} \int xr^{{2n+1}}\;dx={\frac  {r^{{2n+3}}}{2n+3}}
∫x2rdx=xr3four-a2xreight-afoureightln⁡(x+ra){\ displaystyle \ int x ^ {2} r \; dx = {\ frac {xr ^ {3}} {4}} - {\ frac {a ^ {2} xr} {8}} - {\ frac { a ^ {4}} {8}} \ ln \ left ({\ frac {x + r} {a}} \ right)} \int x^{2}r\;dx={\frac  {xr^{3}}{4}}-{\frac  {a^{2}xr}{8}}-{\frac  {a^{4}}{8}}\ln \left({\frac  {x+r}{a}}\right)
∫x2r3dx=xrfive6-a2xr324-afourxrsixteen-a6sixteenln⁡(x+ra){\ displaystyle \ int x ^ {2} r ^ {3} \; dx = {\ frac {xr ^ {5}} {6}} - {\ frac {a ^ {2} xr ^ {3}} { 24}} - {\ frac {a ^ {4} xr} {16}} - {\ frac {a ^ {6}} {16}} \ ln \ left ({\ frac {x + r} {a} } \ right)} \int x^{2}r^{3}\;dx={\frac  {xr^{5}}{6}}-{\frac  {a^{2}xr^{3}}{24}}-{\frac  {a^{4}xr}{16}}-{\frac  {a^{6}}{16}}\ln \left({\frac  {x+r}{a}}\right)
∫x3rdx=rfivefive-a2r33{\ displaystyle \ int x ^ {3} r \; dx = {\ frac {r ^ {5}} {5}} - {\ frac {a ^ {2} r ^ {3}} {3}}} \int x^{3}r\;dx={\frac  {r^{5}}{5}}-{\frac  {a^{2}r^{3}}{3}}
∫x3r3dx=r77-a2rfivefive{\ displaystyle \ int x ^ {3} r ^ {3} \; dx = {\ frac {r ^ {7}} {7}} - {\ frac {a ^ {2} r ^ {5}} { five}}} \int x^{3}r^{3}\;dx={\frac  {r^{7}}{7}}-{\frac  {a^{2}r^{5}}{5}}
∫x3r2n+onedx=r2n+five2n+five-a3r2n+32n+3{\ displaystyle \ int x ^ {3} r ^ {2n + 1} \; dx = {\ frac {r ^ {2n + 5}} {2n + 5}} - {\ frac {a ^ {3} r ^ {2n + 3}} {2n + 3}}} \int x^{3}r^{{2n+1}}\;dx={\frac  {r^{{2n+5}}}{2n+5}}-{\frac  {a^{3}r^{{2n+3}}}{2n+3}}
∫xfourrdx=x3r36-a2xr3eight+afourxrsixteen+a6sixteenln⁡(x+ra){\ displaystyle \ int x ^ {4} r \; dx = {\ frac {x ^ {3} r ^ {3}} {6}} - {\ frac {a ^ {2} xr ^ {3}} {8}} + {\ frac {a ^ {4} xr} {16}} + {\ frac {a ^ {6}} {16}} \ ln \ left ({\ frac {x + r} {a }} \ right)} \int x^{4}r\;dx={\frac  {x^{3}r^{3}}{6}}-{\frac  {a^{2}xr^{3}}{8}}+{\frac  {a^{4}xr}{16}}+{\frac  {a^{6}}{16}}\ln \left({\frac  {x+r}{a}}\right)
∫xfourr3dx=x3rfiveeight-a2xrfivesixteen+afourxr364+3a6xr128+3aeight128ln⁡(x+ra){\ displaystyle \ int x ^ {4} r ^ {3} \; dx = {\ frac {x ^ {3} r ^ {5}} {8}} - {\ frac {a ^ {2} xr ^ {5}} {16}} + {\ frac {a ^ {4} xr ^ {3}} {64}} + {\ frac {3a ^ {6} xr} {128}} + {\ frac {3a ^ {8}} {128}} \ ln \ left ({\ frac {x + r} {a}} \ right)} \int x^{4}r^{3}\;dx={\frac  {x^{3}r^{5}}{8}}-{\frac  {a^{2}xr^{5}}{16}}+{\frac  {a^{4}xr^{3}}{64}}+{\frac  {3a^{6}xr}{128}}+{\frac  {3a^{8}}{128}}\ln \left({\frac  {x+r}{a}}\right)
∫xfiverdx=r77-2a2rfivefive+afourr33{\ displaystyle \ int x ^ {5} r \; dx = {\ frac {r ^ {7}} {7}} - {\ frac {2a ^ {2} r ^ {5}} {5}} + {\ frac {a ^ {4} r ^ {3}} {3}}} \int x^{5}r\;dx={\frac  {r^{7}}{7}}-{\frac  {2a^{2}r^{5}}{5}}+{\frac  {a^{4}r^{3}}{3}}
∫xfiver3dx=r99-2a2r77+afourrfivefive{\ displaystyle \ int x ^ {5} r ^ {3} \; dx = {\ frac {r ^ {9}} {9}} - {\ frac {2a ^ {2} r ^ {7}} { 7}} + {\ frac {a ^ {4} r ^ {5}} {5}}} \int x^{5}r^{3}\;dx={\frac  {r^{9}}{9}}-{\frac  {2a^{2}r^{7}}{7}}+{\frac  {a^{4}r^{5}}{5}}
∫xfiver2n+onedx=r2n+72n+7-2a2r2n+five2n+five+afourr2n+32n+3{\ displaystyle \ int x ^ {5} r ^ {2n + 1} \; dx = {\ frac {r ^ {2n + 7}} {2n + 7}} - {\ frac {2a ^ {2} r ^ {2n + 5}} {2n + 5}} + {\ frac {a ^ {4} r ^ {2n + 3}} {2n + 3}}} \int x^{5}r^{{2n+1}}\;dx={\frac  {r^{{2n+7}}}{2n+7}}-{\frac  {2a^{2}r^{{2n+5}}}{2n+5}}+{\frac  {a^{4}r^{{2n+3}}}{2n+3}}
∫rdxx=r-aln⁡|a+rx|=r-aarsh⁡ax{\ displaystyle \ int {\ frac {r \; dx} {x}} = ra \ ln \ left | {\ frac {a + r} {x}} \ right | = ra \ operatorname {arsh} {\ frac {a} {x}}} {\displaystyle \int {\frac {r\;dx}{x}}=r-a\ln \left|{\frac {a+r}{x}}\right|=r-a\operatorname {arsh} {\frac {a}{x}}}
∫r3dxx=r33+a2r-a3ln⁡|a+rx|{\ displaystyle \ int {\ frac {r ^ {3} \; dx} {x}} = {\ frac {r ^ {3}} {3}} + a ^ {2} ra ^ {3} \ ln \ left | {\ frac {a + r} {x}} \ right |} \int {\frac  {r^{3}\;dx}{x}}={\frac  {r^{3}}{3}}+a^{2}r-a^{3}\ln \left|{\frac  {a+r}{x}}\right|
∫rfivedxx=rfivefive+a2r33+afourr-afiveln⁡|a+rx|{\ displaystyle \ int {\ frac {r ^ {5} \; dx} {x}} = {\ frac {r ^ {5}} {5}} + {\ frac {a ^ {2} r ^ { 3}} {3}} + a ^ {4} ra ^ {5} \ ln \ left | {\ frac {a + r} {x}} \ right |}  
∫r7dxx=r77+a2rfivefive+afourr33+a6r-a7ln⁡|a+rx|{\ displaystyle \ int {\ frac {r ^ {7} \; dx} {x}} = {\ frac {r ^ {7}} {7}} + {\ frac {a ^ {2} r ^ { 5}} {5}} + {\ frac {a ^ {4} r ^ {3}} {3}} + a ^ {6} ra ^ {7} \ ln \ left | {\ frac {a + r } {x}} \ right |}  
∫dxr=arsh⁡xa=ln⁡|x+r|{\ displaystyle \ int {\ frac {dx} {r}} = \ operatorname {arsh} {\ frac {x} {a}} = \ ln \ left | x + r \ right |}  
∫xdxr=r{\ displaystyle \ int {\ frac {x \, dx} {r}} = r}  
∫x2dxr=x2r-a22arsh⁡xa=x2r-a22ln⁡|x+r|{\ displaystyle \ int {\ frac {x ^ {2} \; dx} {r}} = {\ frac {x} {2}} r - {\ frac {a ^ {2}} {2}} \ , \ operatorname {arsh} {\ frac {x} {a}} = {\ frac {x} {2}} r - {\ frac {a ^ {2}} {2}} \ ln \ left | x + r \ right |}  
∫dxxr=-oneaarsh⁡ax=-onealn⁡|a+rx|{\ displaystyle \ int {\ frac {dx} {xr}} = - {\ frac {1} {a}} \, \ operatorname {arsh} {\ frac {a} {x}} = - {\ frac { 1} {a}} \ ln \ left | {\ frac {a + r} {x}} \ right |}  

Integrals with root of x 2 - a 2

Everywhere below:s=x2-a2 {\ displaystyle s = {\ sqrt {x ^ {2} -a ^ {2}}}}   .

Acceptedx2>a2 {\ displaystyle x ^ {2}> a ^ {2}}   forx2<a2 {\ displaystyle x ^ {2} <a ^ {2}}   see the next section.

∫sdx=one2(xs-a2ln⁡(x+s)){\ displaystyle \ int s \; dx = {\ frac {1} {2}} \ left (xs-a ^ {2} \ ln \ left (x + s \ right) \ right)}  
∫xsdx=one3s3{\ displaystyle \ int xs \; dx = {\ frac {1} {3}} s ^ {3}}  
∫sdxx=s-acos-one⁡|ax|{\ displaystyle \ int {\ frac {s \; dx} {x}} = sa \ cos ^ {- 1} \ left | {\ frac {a} {x}} \ right |}  
∫dxs=∫dxx2-a2=ln⁡|x+s|{\ displaystyle \ int {\ frac {dx} {s}} = \ int {\ frac {dx} {\ sqrt {x ^ {2} -a ^ {2}}}} = \ ln \ left | x + s \ right |}  

notice, thatln⁡|x+sa|=sgn(x)arch⁡|xa|=one2ln⁡(x+sx-s) {\ displaystyle \ ln \ left | {\ frac {x + s} {a}} \ right | = \ mathrm {sgn} (x) \ operatorname {arch} \ left | {\ frac {x} {a}} \ right | = {\ frac {1} {2}} \ ln \ left ({\ frac {x + s} {xs}} \ right)}   wherearch⁡|xa| {\ displaystyle \ operatorname {arch} \ left | {\ frac {x} {a}} \ right |}   accepts only positive values.

∫xdxs=s{\ displaystyle \ int {\ frac {x \; dx} {s}} = s}  
∫xdxs3=-ones{\ displaystyle \ int {\ frac {x \; dx} {s ^ {3}}} = - {\ frac {1} {s}}}  
∫xdxsfive=-one3s3{\ displaystyle \ int {\ frac {x \; dx} {s ^ {5}}} = - {\ frac {1} {3s ^ {3}}}}  
∫xdxs7=-onefivesfive{\ displaystyle \ int {\ frac {x \; dx} {s ^ {7}}} = - {\ frac {1} {5s ^ {5}}}}  
∫xdxs2n+one=-one(2n-one)s2n-one{\ displaystyle \ int {\ frac {x \; dx} {s ^ {2n + 1}}} = - {\ frac {1} {(2n-1) s ^ {2n-1}}}}  
∫x2mdxs2n+one=-one2n-onex2m-ones2n-one+2m-one2n-one∫x2m-2dxs2n-one{\ displaystyle \ int {\ frac {x ^ {2m} \; dx} {s ^ {2n + 1}}} = - {\ frac {1} {2n-1}} {\ frac {x ^ {2m -1}} {s ^ {2n-1}}} + {\ frac {2m-1} {2n-1}} \ int {\ frac {x ^ {2m-2} \; dx} {s ^ { 2n-1}}}}  
∫x2dxs=xs2+a22ln⁡|x+sa|{\ displaystyle \ int {\ frac {x ^ {2} \; dx} {s}} = {\ frac {xs} {2}} + {\ frac {a ^ {2}} {2}} \ ln \ left | {\ frac {x + s} {a}} \ right |}  
∫x2dxs3=-xs+ln⁡|x+sa|{\ displaystyle \ int {\ frac {x ^ {2} \; dx} {s ^ {3}}} = - {\ frac {x} {s}} + \ ln \ left | {\ frac {x + s} {a}} \ right |}  
∫xfourdxs=x3sfour+3eighta2xs+3eightafourln⁡|x+sa|{\ displaystyle \ int {\ frac {x ^ {4} \; dx} {s}} = {\ frac {x ^ {3} s} {4}} + {\ frac {3} {8}} a ^ {2} xs + {\ frac {3} {8}} a ^ {4} \ ln \ left | {\ frac {x + s} {a}} \ right |}  
∫xfourdxs3=xs2-a2xs+32a2ln⁡|x+sa|{\ displaystyle \ int {\ frac {x ^ {4} \; dx} {s ^ {3}}} = {\ frac {xs} {2}} - {\ frac {a ^ {2} x} { s}} + {\ frac {3} {2}} a ^ {2} \ ln \ left | {\ frac {x + s} {a}} \ right |}  
∫xfourdxsfive=-xs-one3x3s3+ln⁡|x+sa|{\ displaystyle \ int {\ frac {x ^ {4} \; dx} {s ^ {5}}} = - {\ frac {x} {s}} - {\ frac {1} {3}} { \ frac {x ^ {3}} {s ^ {3}}} + \ ln \ left | {\ frac {x + s} {a}} \ right |}  
∫x2mdxs2n+one=(-one)n-monea2(n-m)∑i=0n-m-oneone2(m+i)+one(n-m-onei)x2(m+i)+ones2(m+i)+one,{\ displaystyle \ int {\ frac {x ^ {2m} \; dx} {s ^ {2n + 1}}} = (- 1) ^ {nm} {\ frac {1} {a ^ {2 (nm )}}} \ sum _ {i = 0} ^ {nm-1} {\ frac {1} {2 (m + i) +1}} {nm-1 \ choose i} {\ frac {x ^ { 2 (m + i) +1}} {s ^ {2 (m + i) +1}}},}   Wheren>m≥0 {\ displaystyle n> m \ geq 0}  
∫dxs3=-onea2xs{\ displaystyle \ int {\ frac {dx} {s ^ {3}}} = - {\ frac {1} {a ^ {2}}} {\ frac {x} {s}}}  
∫dxsfive=oneafour[xs-one3x3s3]{\ displaystyle \ int {\ frac {dx} {s ^ {5}}} = {\ frac {1} {a ^ {4}}} \ left [{\ frac {x} {s}} - {\ frac {1} {3}} {\ frac {x ^ {3}} {s ^ {3}}} \ right]}  
∫dxs7=-onea6[xs-23x3s3+onefivexfivesfive]{\ displaystyle \ int {\ frac {dx} {s ^ {7}}} = - {\ frac {1} {a ^ {6}}} \ left [{\ frac {x} {s}} - { \ frac {2} {3}} {\ frac {x ^ {3}} {s ^ {3}}} + {\ frac {1} {5}} {\ frac {x ^ {5}} {s ^ {5}}} \ right]}  
∫dxs9=oneaeight[xs-33x3s3+3fivexfivesfive-one7x7s7]{\ displaystyle \ int {\ frac {dx} {s ^ {9}}} = {\ frac {1} {a ^ {8}}} \ left [{\ frac {x} {s}} - {\ frac {3} {3}} {\ frac {x ^ {3}} {s ^ {3}}} + {\ frac {3} {5}} {\ frac {x ^ {5}} {s ^ {5}}} - {\ frac {1} {7}} {\ frac {x ^ {7}} {s ^ {7}}} \ right]}  
∫x2dxsfive=-onea2x33s3{\ displaystyle \ int {\ frac {x ^ {2} \; dx} {s ^ {5}}} = - {\ frac {1} {a ^ {2}}} {\ frac {x ^ {3 }} {3s ^ {3}}}}  
∫x2dxs7=oneafour[one3x3s3-onefivexfivesfive]{\ displaystyle \ int {\ frac {x ^ {2} \; dx} {s ^ {7}}} = {\ frac {1} {a ^ {4}}} \ left [{\ frac {1} {3}} {\ frac {x ^ {3}} {s ^ {3}}} - {\ frac {1} {5}} {\ frac {x ^ {5}} {s ^ {5}} } \ right]}  
∫x2dxs9=-onea6[one3x3s3-2fivexfivesfive+one7x7s7]{\ displaystyle \ int {\ frac {x ^ {2} \; dx} {s ^ {9}}} = - {\ frac {1} {a ^ {6}}} \ left [{\ frac {1 } {3}} {\ frac {x ^ {3}} {s ^ {3}}} - {\ frac {2} {5}} {\ frac {x ^ {5}} {s ^ {5} }} + {\ frac {1} {7}} {\ frac {x ^ {7}} {s ^ {7}}} \ right]}  

Integrals with a root of a 2 - x 2

Everywhere below:t=a2-x2(|x|⩽|a|) {\ displaystyle t = {\ sqrt {a ^ {2} -x ^ {2}}} \ qquad {\ mbox {(}} | x | \ leqslant | a | {\ mbox {)}}}  

∫tdx=one2(xt+a2arcsin⁡xa)=one2(xt-a2arccos⁡xa){\ displaystyle \ int t \; dx = {\ frac {1} {2}} \ left (xt + a ^ {2} \ arcsin {\ frac {x} {a}} \ right) = {\ frac { 1} {2}} \ left (xt-a ^ {2} \ arccos {\ frac {x} {a}} \ right)}  
∫xtdx=-one3t3{\ displaystyle \ int xt \; dx = - {\ frac {1} {3}} t ^ {3}}  
∫tdxx=t-aln⁡|a+tx|{\ displaystyle \ int {\ frac {t \; dx} {x}} = ta \ ln \ left | {\ frac {a + t} {x}} \ right |}  
∫dxt=arcsin⁡xa{\ displaystyle \ int {\ frac {dx} {t}} = \ arcsin {\ frac {x} {a}}}  
∫xdxt=-t{\ displaystyle \ int {\ frac {x \; dx} {t}} = - t}  
∫x2dxt=-x2t+a22arcsin⁡xa{\ displaystyle \ int {\ frac {x ^ {2} \; dx} {t}} = - {\ frac {x} {2}} t + {\ frac {a ^ {2}} {2}} \ arcsin {\ frac {x} {a}}}  
∫tdx=one2(xt-sgn⁡xarch⁡|xa|){\ displaystyle \ int t \; dx = {\ frac {1} {2}} \ left (xt- \ operatorname {sgn} x \, \ operatorname {arch} \ left | {\ frac {x} {a} } \ right | \ right)}  

Integrals with a root from a common square trinomial

It is indicated here:R=ax2+bx+c {\ displaystyle R = ax ^ {2} + bx + c}  

∫dxax2+bx+c=onealn⁡|2aR+2ax+b|(a>0){\ displaystyle \ int {\ frac {dx} {\ sqrt {ax ^ {2} + bx + c}}} = {\ frac {1} {\ sqrt {a}}} \ ln \ left | 2 {\ sqrt {aR}} + 2ax + b \ right | \ qquad {\ mbox {(}} a> 0 {\ mbox {)}}}  
∫dxax2+bx+c=oneaarsh⁡2ax+bfourac-b2(a>0,fourac-b2>0){\ displaystyle \ int {\ frac {dx} {\ sqrt {ax ^ {2} + bx + c}}} = {\ frac {1} {\ sqrt {a}}} \, \ operatorname {arsh} { \ frac {2ax + b} {\ sqrt {4ac-b ^ {2}}}} \ qquad {\ mbox {(}} a> 0 {\ mbox {,}} 4ac-b ^ {2}> 0 { \ mbox {)}}}  
∫dxax2+bx+c=onealn⁡|2ax+b|(a>0,fourac-b2=0){\ displaystyle \ int {\ frac {dx} {\ sqrt {ax ^ {2} + bx + c}}} = {\ frac {1} {\ sqrt {a}}} \ ln | 2ax + b | \ quad {\ mbox {(}} a> 0 {\ mbox {,}} 4ac-b ^ {2} = 0 {\ mbox {)}}}  
∫dxax2+bx+c=-one-aarcsin⁡2ax+bb2-fourac(a<0,fourac-b2<0){\ displaystyle \ int {\ frac {dx} {\ sqrt {ax ^ {2} + bx + c}}} = - {\ frac {1} {\ sqrt {-a}}} \ arcsin {\ frac { 2ax + b} {\ sqrt {b ^ {2} -4ac}}} \ qquad {\ mbox {(}} a <0 {\ mbox {,}} 4ac-b ^ {2} <0 {\ mbox { )}}}  
∫dx(ax2+bx+c)3=fourax+2b(fourac-b2)R{\ displaystyle \ int {\ frac {dx} {\ sqrt {(ax ^ {2} + bx + c) ^ {3}}}} = {\ frac {4ax + 2b} {(4ac-b ^ {2 }) {\ sqrt {R}}}}}  
∫dx(ax2+bx+c)five=fourax+2b3(fourac-b2)R(oneR+eightafourac-b2){\ displaystyle \ int {\ frac {dx} {\ sqrt {(ax ^ {2} + bx + c) ^ {5}}}} = {\ frac {4ax + 2b} {3 (4ac-b ^ { 2}) {\ sqrt {R}}}} \ left ({\ frac {1} {R}} + {\ frac {8a} {4ac-b ^ {2}}} \ right)}  
∫dx(ax2+bx+c)2n+one=fourax+2b(2n-one)(fourac-b2)R(2n-one)/2+eighta(n-one)(2n-one)(fourac-b2)∫dxR(2n-one)/2{\ displaystyle \ int {\ frac {dx} {\ sqrt {(ax ^ {2} + bx + c) ^ {2n + 1}}}} = {\ frac {4ax + 2b} {(2n-1) (4ac-b ^ {2}) R ^ {(2n-1) / 2}}} + {\ frac {8a (n-1)} {(2n-1) (4ac-b ^ {2})} } \ int {\ frac {dx} {R ^ {(2n-1) / 2}}}}  
∫xdxax2+bx+c=Ra-b2a∫dxR{\ displaystyle \ int {\ frac {x \; dx} {\ sqrt {ax ^ {2} + bx + c}}} = {\ frac {\ sqrt {R}} {a}} - {\ frac { b} {2a}} \ int {\ frac {dx} {\ sqrt {R}}}}  
∫xdx(ax2+bx+c)3=-2bx+fourc(fourac-b2)R{\ displaystyle \ int {\ frac {x \; dx} {\ sqrt {(ax ^ {2} + bx + c) ^ {3}}}} = - {\ frac {2bx + 4c} {(4ac- b ^ {2}) {\ sqrt {R}}}}}  
∫xdx(ax2+bx+c)2n+one=-one(2n-one)aR(2n-one)/2-b2a∫dxR(2n+one)/2{\ displaystyle \ int {\ frac {x \; dx} {\ sqrt {(ax ^ {2} + bx + c) ^ {2n + 1}}}} = - {\ frac {1} {(2n- 1) aR ^ {(2n-1) / 2}}} - {\ frac {b} {2a}} \ int {\ frac {dx} {R ^ {(2n + 1) / 2}}}}  
∫dxxax2+bx+c=-onecln⁡(2cR+bx+2cx){\ displaystyle \ int {\ frac {dx} {x {\ sqrt {ax ^ {2} + bx + c}}}} = - {\ frac {1} {\ sqrt {c}}} \ ln \ left ({\ frac {2 {\ sqrt {cR}} + bx + 2c} {x}} \ right)}  
∫dxxax2+bx+c=-onecarsh⁡(bx+2c|x|fourac-b2){\ displaystyle \ int {\ frac {dx} {x {\ sqrt {ax ^ {2} + bx + c}}}} = - {\ frac {1} {\ sqrt {c}}} \ operatorname {arsh } \ left ({\ frac {bx + 2c} {| x | {\ sqrt {4ac-b ^ {2}}}}} \ right)}  

Integrals with a root from a linear function

∫dxxax+b=-2barth⁡ax+bb{\ displaystyle \ int {\ frac {dx} {x {\ sqrt {ax + b}}}}, = \, {\ frac {-2} {\ sqrt {b}}} \ operatorname {arth} { \ sqrt {\ frac {ax + b} {b}}}}  
∫ax+bxdx=2(ax+b-barth⁡ax+bb){\ displaystyle \ int {\ frac {\ sqrt {ax + b}} {x}} \, dx \; = \; 2 \ left ({\ sqrt {ax + b}} - {\ sqrt {b}} \ operatorname {arth} {\ sqrt {\ frac {ax + b} {b}}} \ right)}  
∫xnax+bdx=2a(2n+one)(xnax+b-bn∫xn-oneax+bdx){\ displaystyle \ int {\ frac {x ^ {n}} {\ sqrt {ax + b}}} \, dx \; = \; {\ frac {2} {a (2n + 1)}} left (x ^ {n} {\ sqrt {ax + b}} - bn \ int {\ frac {x ^ {n-1}} {\ sqrt {ax + b}}}, dx \ right)}  
∫xnax+bdx=22n+one(xn+oneax+b+bxnax+b-nb∫xn-oneax+bdx){\ displaystyle \ int x ^ {n} {\ sqrt {ax + b}} \, dx \; = \; {\ frac {2} {2n + 1}} \ left (x ^ {n + 1} { \ sqrt {ax + b}} + bx ^ {n} {\ sqrt {ax + b}} - nb \ int x ^ {n-1} {\ sqrt {ax + b}} \, dx \ right)}  


Bibliography

Books
  • Gradshtein I. S. Ryzhik I. M. Tables of integrals, sums, series and products. - 4th ed. - M .: Nauka, 1963. - ISBN 0-12-294757-6 // EqWorld
  • Dvayt G. B. Tables of Integrals of St. Petersburg: Publishing House and Printing House of VNIIG im. B.V. Vedeneeva, 1995 .-- 176 p. - ISBN 5-85529-029-8 .
  • D. Zwillinger. CRC Standard Mathematical Tables and Formulae , 31st ed., 2002. ISBN 1-58488-291-3 .
  • M. Abramowitz and IA Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964. ISBN 0-486-61272-4
  • Korn G.A., Korn T.M. Math reference book for scientists and engineers . - M .: " Science ", 1974.
Integral Tables
  • Integrals at EqWorld
  • SOS Mathematics: Tables and Formulas
Calculation of Integrals
  • The Integrator (at Wolfram Research )
  • Empire of Numbers


Source - https://en.wikipedia.org/w/index.php?title=List of_integrals_of_rational_functions&oldid = 99431223


More articles:

  • Half Plane
  • Archdiocese
  • Acre
  • Syngonia
  • Janissaries
  • Muhali
  • Teplice
  • Rowzing Symptom
  • List of integrals of hyperbolic functions
  • Slovak Extra League

All articles

Clever Geek | 2019