Clever Geek Handbook
📜 ⬆️ ⬇️

Catenoid

Catenoid.

A catenoid is the smallest surface formed by the rotation of a chain line .

y=achxa{\ displaystyle y = a \, \ operatorname {ch} \, {\ frac {x} {a}}} {\ displaystyle y = a \, \ operatorname {ch} \, {\ frac {x} {a}}} around axisOX {\ displaystyle OX} Ox .

History

The catenoid was first described by Euler in 1744 . The word catenoid is derived from lat. catena means chain and Greek éidos - kind .

Equations

The catenoid can also be set parametrically:

u∈R,v∈[0;2π),{x=ch⁡(u)cos⁡(v)y=ch⁡(u)sin⁡(v)z=u,{\ displaystyle u \ in \ mathbb {R}, \ quad v \ in \ left [0; 2 \ pi \ right), \ qquad {\ begin {cases} x = \ operatorname {ch} (u) \, \ cos (v) \\ y = \ operatorname {ch} (u) \, \ sin (v) \\ z = u \ end {cases}},} {\displaystyle u\in \mathbb {R} ,\quad v\in \left[0;2\pi \right),\qquad {\begin{cases}x=\operatorname {ch} (u)\,\cos(v)\\y=\operatorname {ch} (u)\,\sin(v)\\z=u\end{cases}},}

Wherech {\ displaystyle \ operatorname {ch}} \operatorname {ch} - hyperbolic cosine .

Properties

Soap film in the form of a catenoid.
  • It is a minimal surface .
    • In particular, a soap film takes on the shape of a catenoid, stretched over two close wire circles whose planes are perpendicular to the line connecting their centers.
  • A not too large portion of the catenoid can be converted isometrically (without compression and tension) into a portion of the helicoid .
  • The total curvature is equal to-four⋅π {\ displaystyle -4 \ cdot \ pi} {\displaystyle -4\cdot \pi } .
    • Total minimum surface inR3 {\ displaystyle \ mathbb {R} ^ {3}} \mathbb {R} ^{3} with total curvature-four⋅π {\ displaystyle -4 \ cdot \ pi} {\displaystyle -4\cdot \pi } is either a catenoid or an Enneper surface .

Links

  • Catenoid // Great Soviet Encyclopedia : [in 30 vol.] / Ch. ed. A.M. Prokhorov . - 3rd ed. - M .: Soviet Encyclopedia, 1969-1978.


Source - https://ru.wikipedia.org/w/index.php?title=Katenoid&oldid=94045633


More articles:

  • History of Iconography
  • Han Shushinsky
  • Kurganinsk
  • Time Management
  • Related frame of reference
  • Photo Effect
  • Half Plane
  • Archdiocese
  • Syngonia
  • Janissaries

All articles

Clever Geek | 2019