Clever Geek Handbook
📜 ⬆️ ⬇️

Squuse number

The Skewes number is the smallest positive integer.n {\ displaystyle n} n , such that, starting with it, the inequalityπ(n)<Li⁡(n) {\ displaystyle \ pi (n) <\ operatorname {Li} (n)} {\ displaystyle \ pi (n) <\ operatorname {Li} (n)} stops running whereπ(n) {\ displaystyle \ pi (n)} \ pi (n) - distribution function of primes ,Li⁡(n)=∫2ndtln⁡(t) {\ displaystyle \ operatorname {Li} (n) = \ int \ limits _ {2} ^ {n} {\ frac {dt} {\ ln (t)}}} {\ displaystyle \ operatorname {Li} (n) = \ int \ limits _ {2} ^ {n} {\ frac {dt} {\ ln (t)}}} - shifted integral logarithm [1] .

John Littlewood in 1914 gave unconstructive evidence that such a number exists.

Stanley Skewes in 1933 estimated this number, based on the Riemann hypothesis , asexp3⁡(79)=eee79≈tententen34 {\ displaystyle \ exp ^ {3} (79) = e ^ {e ^ {e ^ {79}}} \ approx 10 ^ {10 ^ {10 ^ {34}}}} {\ displaystyle \ exp ^ {3} (79) = e ^ {e ^ {e ^ {79}}} \ approx 10 ^ {10 ^ {10 ^ {34}}}} Is the first number of Skuse , denoted bySkone {\ displaystyle \ mathrm {Sk} _ {1}} {\ mathrm {Sk}} _ {1} .

In 1955, he also assessed without assuming the validity of the Riemann hypothesis:expfour⁡(7,705)=eeee7,705≈tententen963 {\ displaystyle \ exp ^ {4} (7 {,} 705) = e ^ {e ^ {e ^ {e ^ {7 {,} 705}}}} approx 10 ^ {10 ^ {10 ^ {963 }}}} {\ displaystyle \ exp ^ {4} (7 {,} 705) = e ^ {e ^ {e ^ {e ^ {7 {,} 705}}}} approx 10 ^ {10 ^ {10 ^ {963 }}}} - the second number of Skuse , denoted bySk2 {\ displaystyle \ mathrm {Sk} _ {2}} {\ mathrm {Sk}} _ {2} . This is one of the largest numbers ever used in mathematical proofs, although much less than the Graham number .

In 1987, RJ (HJJ te Riele), without assuming the Riemann hypothesis, limited the Squuse number toee27/four {\ displaystyle e ^ {e ^ {27/4}}} e ^ {{e ^ {{27/4}}}} which is approximately 8.18510 370 .

By 2018, it is known that the Skuse number is between 10 19 [2] and 1.3971672 · 10 316 ≈ e 727.951336108 [3] .

Notes

  1. ↑ Yu. V. Matiyasevich . Alan Turing and Number Theory // Mathematics in Higher Education. - 2012. - No. 10. - S. 111-134.
  2. ↑ Jan Büthe. An analytic method for bounding ψ ( x ) // Math. Comp. - 2018 .-- Vol. 87. - P. 1991-2009. - arXiv : 1511.02032 . - DOI : 10.1090 / mcom / 3264 . The proof uses the Riemann hypothesis.
  3. ↑ Yannick Saouter, Timothy Trudgian, and Patrick Demichel. A still sharper region where π ( x ) - li ( x ) is positive // ​​Math. Comp. - 2015. - Vol. 84. - P. 2433-2446. - DOI : 10.1090 / S0025-5718-2015-02930-5 . MR : 3356033 . The indicated estimate does not require the Riemann hypothesis.


Source - https://ru.wikipedia.org/w/index.php?title=Squuse_Number&oldid=97699233


More articles:

  • Cassin, Rene
  • Alexander Garden (Kirov)
  • Bouchardon, Edme
  • Cholinergic Receptors
  • Arbor, Louise
  • History of Iconography
  • Walking on a Thin Line
  • Sectioning
  • Han Shushinsky
  • Tok Pisin

All articles

Clever Geek | 2019