Clever Geek Handbook
📜 ⬆️ ⬇️

Legendre symbol

The Legendre symbol is a function used in number theory . Introduced by the French mathematician A. M. Legendre . The Legendre symbol is a special case of the Jacobi symbol , which, in turn, is a special case of the Kronecker-Jacobi symbol , which is sometimes called the Legendre-Jacobi-Kronecker symbol.

Definition

Let a be an integer and p be a prime other than 2. Legendre symbol(ap) {\ displaystyle \ textstyle \ left ({\ frac {a} {p}} \ right)}   defined as follows:

  • (ap)=0{\ displaystyle \ textstyle \ left ({\ frac {a} {p}} \ right) = 0}   if a is divisible by p ;
  • (ap)=one{\ displaystyle \ textstyle \ left ({\ frac {a} {p}} \ right) = 1}   if a is a quadratic residue modulo p (i.e., there exists an integer x such thatx2≡a(mod p ) {\ displaystyle x ^ {2} \ equiv a {\ pmod {p}}}   ) and a is not divisible by p ;
  • (ap)=-one{\ displaystyle \ textstyle \ left ({\ frac {a} {p}} \ right) = - 1}   if a is a quadratic non-residue modulo p .

Properties

  • Multiplicativeness :(abp)=(ap)(bp) {\ displaystyle \ left ({\ frac {ab} {p}} \ right) = \ left ({\ frac {a} {p}} \ right) \ left ({\ frac {b} {p}} \ right)}   . In particular,
    • Ifa {\ displaystyle a}   not divided byp {\ displaystyle p}   then(a2p)=one. {\ displaystyle \ left ({\ frac {a ^ {2}} {p}} \ right) = 1.}  
    • If aa=poneαone⋅p2α2⋅...⋅pkαk {\ displaystyle a = p_ {1} ^ {\ alpha _ {1}} \ cdot p_ {2} ^ {\ alpha _ {2}} \ cdot \ ldots \ cdot p_ {k} ^ {\ alpha _ {k }}}   - canonical decompositiona {\ displaystyle a}   to simple factors then
      (ap)=(ponep)αone(mod2)⋅(p2p)α2(mod2)⋯(pkp)αk(mod2).{\ displaystyle \ left ({\ frac {a} {p}} \ right) = \ left ({\ frac {p_ {1}} {p}} \ right) ^ {\ alpha _ {1} {\ pmod {2}}} \ cdot \ left ({\ frac {p_ {2}} {p}} \ right) ^ {\ alpha _ {2} {\ pmod {2}}} \ cdots \ left ({\ frac {p_ {k}} {p}} \ right) ^ {\ alpha _ {k} {\ pmod {2}}}.}  
  • If aa≡b(modp) {\ displaystyle a \ equiv b {\ pmod {p}}}   then
    (ap)=(bp).{\ displaystyle \ left ({\ frac {a} {p}} \ right) = \ left ({\ frac {b} {p}} \ right).}  
  • (onep)=one.{\ displaystyle \ left ({\ frac {1} {p}} \ right) = 1.}  
  • (-onep)=(-one)(p-one)/2.{\ displaystyle \ left ({\ frac {-1} {p}} \ right) = (- 1) ^ {(p-1) / 2}.}  
  • (2p)=(-one)(p2-one)/eight.{\ displaystyle \ left ({\ frac {2} {p}} \ right) = (- 1) ^ {(p ^ {2} -1) / 8}.}  
  • Quadratic reciprocity law : Let p and q be unequal odd primes, then
    (qp)=(-one)p-one2⋅q-one2⋅(pq).{\ displaystyle \ left ({\ frac {q} {p}} \ right) = (- 1) ^ {{\ frac {p-1} {2}} \ cdot {\ frac {q-1} {2 }}} \ cdot \ left ({\ frac {p} {q}} \ right).}  
If ap≡q(modfour⋅a) {\ displaystyle p \ equiv q {\ pmod {4 \ cdot a}}}   then
(ap)=(aq){\ displaystyle \ left ({\ frac {a} {p}} \ right) = \ left ({\ frac {a} {q}} \ right)}   .
  • Among the numbersone⩽a⩽p-one {\ displaystyle 1 \ leqslant a \ leqslant p-1}   exactly half has a Legendre symbol equal to +1, and the other half has −1.
  • Gauss quadratic residue lemma
  • Euler formula
(ap)≡a(p-one)/2(modp).{\ displaystyle \ left ({\ frac {a} {p}} \ right) \ equiv a ^ {(p-1) / 2} {\ pmod {p}}.}  

Literature

  • Vinogradov I. M. Fundamentals of number theory . - Moscow: GITTL, 1952. - S. 180. - ISBN 5-93972-252-0 .


Source - https://ru.wikipedia.org/w/index.php?title=Lejandra_symbol&oldid=92874888


More articles:

  • Capetus
  • Galilean Transformations
  • Dionysius Areopagite
  • 1452 year
  • Iguanoids
  • Temple of Set
  • Saturn
  • Muhammad Amin
  • Group Policy
  • Morev, Gleb Alekseevich

All articles

Clever Geek | 2019