Clever Geek Handbook
📜 ⬆️ ⬇️

Artwork Plaque

In a comprehensive analysis by BlaschkeB(z) {\ displaystyle B (z)} B (z) An analytic function in a unit circle is called that has zeros (their finite or countable number) at predetermined points{zn}onek {\ displaystyle \ {z_ {n} \} _ {1} ^ {k}} {\ displaystyle \ {z_ {n} \} _ {1} ^ {k}} wherek {\ displaystyle k} k - a finite positive number or infinity (it is called a Blaschke sequence ). If the sequence of zeros is infinite, then an additional condition is imposed on it - the convergence of the series∑n(one-|zn|). {\ displaystyle \ sum _ {n} (1- | z_ {n} |).} {\ displaystyle \ sum _ {n} (1- | z_ {n} |).}

The product of Blaschke is built from the so-called Blaschke factorsB(z)=∏B(zn,z) {\ displaystyle B (z) = \ prod B (z_ {n}, z)} {\ displaystyle B (z) = \ prod B (z_ {n}, z)} of the following form:

B(zn,z)=|zn|znz-znone-zn¯z.{\ displaystyle B (z_ {n}, z) = {\ frac {| z_ {n} |} {z_ {n}}} {\ frac {z-z_ {n}} {1 - {\ overline {z_ {n}}} z}}.} {\ displaystyle B (z_ {n}, z) = {\ frac {| z_ {n} |} {z_ {n}}} {\ frac {z-z_ {n}} {1 - {\ overline {z_ {n}}} z}}.}

Ifzn=0 {\ displaystyle z_ {n} = 0} {\ displaystyle z_ {n} = 0} is consideredB(0,z)=z {\ displaystyle B (0, z) = z} {\ displaystyle B (0, z) = z} .

Source - https://ru.wikipedia.org/w/index.php?title=Blashke_Production&oldid=97658809


More articles:

  • Crusader
  • Marine Collection
  • Roslyakovo (Murmansk)
  • Grammatical Number
  • Smiranin, Anatoly Dmitrievich
  • Paria
  • Wallisneria
  • Lourdes
  • Ajuda Palace
  • Russian Ice Hockey Championship 2002/2003

All articles

Clever Geek | 2019