Clever Geek Handbook
πŸ“œ ⬆️ ⬇️

Triangular number

NΓΊmeros triangulares.png

A triangular number is one of the types of curly numbers , defined as the number of points that can be placed in the shape of a regular triangle (see figure). Obviously, from a purely arithmetic point of view, the nth triangular number is the sum of the n first natural numbers .

Sequence of triangular numbersTn {\ displaystyle T_ {n}} T_ {n} forn=0,one,2,... {\ displaystyle n = 0,1,2, \ ldots} n = 0,1,2, \ ldots starts like this:

0 , 1 , 3 , 6 , 10 , 15 , 21 , 28 , 36 , 45 , 55 , 66 , 78 , 91 , 105 , 120 ... (sequence A000217 in OEIS )

Content

Properties

  • Formulas for the n- th triangular number:
    • Tn=one2n(n+one){\ displaystyle T_ {n} = {\ frac {1} {2}} n (n + 1)}   ;
    • Tn=one+2+3+β‹―+(n-2)+(n-one)+n=βˆ‘j=onenj{\ displaystyle T_ {n} = 1 + 2 + 3 + \ dots + (n-2) + (n-1) + n = \ sum _ {j = 1} ^ {n} j}   ;
    • Tn=(n+one2){\ displaystyle T_ {n} = {n + 1 \ choose 2}}   - binomial coefficient .
For example, 1953 is the 62nd triangular number:T62=62β‹…632=1953. {\ displaystyle T_ {62} = {\ frac {62 \ cdot 63} {2}} = 1953.}  
  • The recurrence formula for the nth triangular number:
    Tn=Tn-one+n{\ displaystyle T_ {n} = T_ {n-1} + n}   .
 
Links between objects
  • If an {\ displaystyle n}   connected in pairs by segments, the number of segments will be expressed as a triangular number:
Tn-one=n(n-one)2{\ displaystyle T_ {n-1} = {\ frac {n (n-1)} {2}}}  
For example, if we have 4 objects, then we can only buildfourβ‹…3/2=6 {\ displaystyle 4 \ cdot 3/2 = 6}   single connections between objects.
  • The sum of a finite series of triangular numbers is calculated by the formula:
Sm-one=one+3+6+β‹―+(m-one)m2=m3-m6{\ displaystyle S_ {m-1} = 1 + 3 + 6 + \ dots + {\ frac {(m-1) m} {2}} = {\ frac {m ^ {3} -m} {6} }}   .
  • A series of inverse triangular numbers converges:
one+one3+one6+oneten+one15+β‹―=2βˆ‘n=one∞(onen-onen+one)=2{\ displaystyle 1+ {1 \ over 3} + {1 \ over 6} + {1 \ over 10} + {1 \ over 15} + \ dots = 2 \ sum _ {n = 1} ^ {\ infty} \ left ({1 \ over n} - {1 \ over n + 1} \ right) = 2}  
  • The mysterious β€œ number of the beast ” (666) is the 36th triangular. It is the smallest triangular number, which is representable as the sum of the squares of triangular numbers [1] :666=152+212. {\ displaystyle 666 = 15 ^ {2} + 21 ^ {2}.}  
  • The third line (diagonal) of the Pascal triangle consists of triangular numbers.

Relationship with other classes of numbers

The sum of two consecutive triangular numbers is a square number (full square), i.e.

Tn-one+Tn=n2{\ displaystyle T_ {n-1} + T_ {n} = n ^ {2}}   .

Examples:

6 + 10 = 16 10 + 15 = 25 

Each even perfect number is triangular [2] .

Any natural number can be represented as the sum of no more than three triangular numbers. The statement was first formulated in 1638 by Pierre Fermat in a letter to Mersenne without proof, first proved in 1796 by Gauss [3] .

Natural numberm {\ displaystyle m}   is triangular if and only if the numbereightm+one {\ displaystyle 8m + 1}   is a full square . In fact, ifm {\ displaystyle m}   triangular theneightm+one=eightn(n+one)2+one=fourn2+fourn+one=(2n+one)2. {\ displaystyle 8m + 1 = 8 {\ frac {n (n + 1)} {2}} + 1 = 4n ^ {2} + 4n + 1 = (2n + 1) ^ {2}.}   Conversely, the numbereightm+one {\ displaystyle 8m + 1}   odd, and if it is equal to the square of some numbera, {\ displaystyle a,}   thena {\ displaystyle a}   also odd:a=2c+one, {\ displaystyle a = 2c + 1,}   and we get the equality:eightm+one=(2c+one)2=fourc2+fourc+one, {\ displaystyle 8m + 1 = (2c + 1) ^ {2} = 4c ^ {2} + 4c + 1,}   where from:m=c(c+one)2 {\ displaystyle m = {\ frac {c (c + 1)} {2}}}   Is a triangular number.

The square of the nth triangular number is the sum of the cubes of the n first natural numbers [4] .

There are infinitely many triangular numbers that are simultaneously square (β€œ square triangular numbers ”) [5] :one,36,1225,41616,1413721... {\ displaystyle 1.36.1225.41616.1413721 \ dots}   (sequence A001110 in OEIS ).

Variations and generalizations

The concept of a flat triangular number can be generalized to three or more dimensions. Their spatial counterpart are tetrahedral numbers , and in an arbitraryd {\ displaystyle d}   -dimensional space, one can define hypertetrahedral numbers :

Tn[d]=(n-one+d)!(n-one)!d!{\ displaystyle T_ {n} ^ {[d]} = {\ frac {(n-1 + d)!} {(n-1)! \ d!}}}  

Their special case are:

  • Tn[2]{\ displaystyle T_ {n} ^ {[2]}}   Are triangular numbers.
  • Tn[3]{\ displaystyle T_ {n} ^ {[3]}}   - tetrahedral numbers.
  • Tn[four]{\ displaystyle T_ {n} ^ {[4]}}   - pentatope numbers .

Notes

  1. ↑ Desa E., Desa M., 2016 , p. 225.
  2. ↑ Voight, John. Perfect numbers: an elementary introduction // University of California, Berkley. - 1998 .-- S. 7 .
  3. ↑ Desa E., Desa M., 2016 , p. ten.
  4. ↑ Desa E., Desa M., 2016 , p. 79.
  5. ↑ Desa E., Desa M., 2016 , p. 25–33.

Literature

  • Vilenkin N. Ya., Shibasov L. P. Shibasova 3. F. Behind the pages of a mathematics textbook: Arithmetic. Algebra. Geometry. - M .: Education, 1996.- S. 30. - 320 p. - ISBN 5-09-006575-6 .
  • Gleizer G.I. History of mathematics at school . - M .: Enlightenment, 1964 .-- 376 p.
  • Desa E., Desa M. Curly numbers. - M .: ICMMO, 2016 .-- 349 p. - ISBN 978-5-4439-2400-7 .

Links

  • Curly numbers
  • Figurate Numbers on MathWorld
Source - https://ru.wikipedia.org/w/index.php?title= Triangular_number&oldid = 100938708


More articles:

  • Pribaikalsky District
  • Series Inversion Lagrange Theorem
  • Ishkashimi
  • Hamlet (film, 1948)
  • Google Translator
  • Chrome
  • Superionic Conductivity
  • Coronation coins and tokens
  • Transport in Albania
  • Beggars Banquet Records

All articles

Clever Geek | 2019