Clever Geek Handbook
📜 ⬆️ ⬇️

Series Inversion Lagrange Theorem

The Lagrange theorem on the inversion of series allows us to explicitly write the inverse function to a given analytic function in the form of an infinite series. The theorem has applications in combinatorics.

Content

Wording

Let the functionf(z) {\ displaystyle f (z)}   analytic at the pointz0 {\ displaystyle z_ {0}}   andf′(z0)≠0 {\ displaystyle f '(z_ {0}) \ neq 0}   . Then in some neighborhood of the pointw0=f(z0) {\ displaystyle w_ {0} = f (z_ {0})}   function inverse to itf-one(w) {\ displaystyle f ^ {- 1} (w)}   representable by a number of species

f-one(w)=z0+∑n=one∞onen!(dn-onedzn-one(z-z0f(z)-w0)n)|z=z0(w-w0)n.{\ displaystyle f ^ {- 1} (w) = z_ {0} + \ sum _ {n = 1} ^ {\ infty} {\ frac {1} {n!}} \ left. \ left ({\ frac {d ^ {n-1}} {dz ^ {n-1}}} \ left ({\ frac {z-z_ {0}} {f (z) -w_ {0}}} \ right) ^ {n} \ right) \ right | _ {z = z_ {0}} (w-w_ {0}) ^ {n}.}  

Applications

Burman Series - Lagrange

The Burman – Lagrange series is defined as the expansion of a holomorphic functionf(z) {\ displaystyle f (z)}   in powers of another holomorphic functionw(z) {\ displaystyle w (z)}   and is a generalization of the Taylor series .

Let bef(z) {\ displaystyle f (z)}   andw(z) {\ displaystyle w (z)}   holomorphic in a neighborhood of some pointa∈C {\ displaystyle a \ in \ mathbb {C}}   besidesw(a)=0 {\ displaystyle w (a) = 0}   anda {\ displaystyle a}   - simple zero functionw(z) {\ displaystyle w (z)}   . Now select some areaD∋a {\ displaystyle D \ ni a}   , whereinf {\ displaystyle f}   andw {\ displaystyle w}   holomorphic, andw {\ displaystyle w}   univalent inD¯ {\ displaystyle {\ overline {D}}}   . Then there is a decomposition of the form:

f(z)=∑n=0∞dnwn(z),{\ displaystyle f (z) = \ sum _ {n = 0} ^ {\ infty} d_ {n} w ^ {n} (z),}  

where are the coefficientsdn {\ displaystyle d_ {n}}   are calculated by the following expression:

dn=one2πi∫∂Df(ζ)w′(ζ)wn+one(ζ)dζ=onen!limz→adn-onedzn-one{f′(z)(z-a)nwn(z)}.{\ displaystyle d_ {n} = {\ frac {1} {2 \ pi i}} \ int \ limits _ {\ partial D} {\ frac {f (\ zeta) w '(\ zeta)} {w ^ {n + 1} (\ zeta)}} \, d \ zeta = {\ frac {1} {n!}} \ lim _ {z \ to a} {\ frac {d ^ {n-1}} { dz ^ {n-1}}} \ left \ {f '(z) {\ frac {(za) ^ {n}} {w ^ {n} (z)}} \ right \}.}  

Series inversion theorem

A special case of the application of series is the so-called problem of inverting a Taylor series.

Consider a decomposition of the formw=∑n=one∞anzn {\ displaystyle w = \ sum _ {n = 1} ^ {\ infty} a_ {n} z ^ {n}}   . We try using the obtained expression to calculate the coefficients of the seriesz=∑n=one∞bnwn {\ displaystyle z = \ sum _ {n = 1} ^ {\ infty} b_ {n} w ^ {n}}   :

bn=onen!limz→0dn-onedzn-one(zw)n.{\ displaystyle b_ {n} = {\ frac {1} {n!}} \ lim _ {z \ to 0} {\ frac {d ^ {n-1}} {dz ^ {n-1}}} \ left ({\ frac {z} {w}} \ right) ^ {n}.}  

Generalizations

Under the conditions of the theorem for a superposition of the formF∘f-one {\ displaystyle F \ circ f ^ {- 1}}   fair presentation in the form of a series

F(f-one(w))=z0+∑n=one∞onen!(dn-onedzn-one(F′(z)(z-z0f(z)-w0)n))|z=z0(w-w0)n.{\ displaystyle F (f ^ {- 1} (w)) = z_ {0} + \ sum _ {n = 1} ^ {\ infty} {\ frac {1} {n!}} \ left. \ left ({\ frac {d ^ {n-1}} {dz ^ {n-1}}} \ left (F '(z) \ left ({\ frac {z-z_ {0}} {f (z) -w_ {0}}} \ right) ^ {n} \ right) \ right) \ right | _ {z = z_ {0}} (w-w_ {0}) ^ {n}.}  

Literature

  • Shabat B.V. Introduction to complex analysis. - M .: Nauka , 1969 .-- 577 p.

Links

  • Weisstein, Eric W. Lagrange expansion on Wolfram MathWorld .
  • Weisstein, Eric W. Lagrange Inversion Theorem on the Wolfram MathWorld website.
  • Weisstein, Eric W. Bürmann's Theorem on the Wolfram MathWorld website.
  • Weisstein, Eric W. Series Reversion on Wolfram MathWorld .
  • Bürmann-Lagrange series (English)
Source - https://ru.wikipedia.org/w/index.php?title=Larange_reference theorem_old_ =& oldid = 97086637


More articles:

  • Timoshenkov, Yuri Sergeevich
  • Dirac Permanent
  • Parashurama
  • Tonoyan, Ruben Alexandrovich
  • Pribaikalsky District
  • Ishkashimi
  • Hamlet (film, 1948)
  • Google Translator
  • Triangular Number
  • Chrome

All articles

Clever Geek | 2019