Clever Geek Handbook
📜 ⬆️ ⬇️

Ampere's Law

The laws of Ampere are the law of interaction of electric currents It was first installed by Andre Marie Ampère in 1820 for direct current. It follows from Ampere's law that parallel conductors with electric currents flowing in one direction attract each other and repel each other. Ampere's Law is also called the law that determines the force with which a magnetic field acts on a small segment of a conductor with a current. The force is linearly dependent on both current and magnetic induction.B {\ displaystyle B} B . Expression for powerdF→ {\ displaystyle d {\ vec {F}}} d {\ vec F} with which a magnetic field acts on a volume elementdV {\ displaystyle dV} dV conductor with current densityj→ {\ displaystyle {\ vec {j}}} \ vec j in induction magnetic fieldB→ {\ displaystyle {\ vec {B}}} {\ vec {B}} , in the International System of Units (SI) has the form:

dF→=j→×B→dV.{\ displaystyle d {\ vec {F}} = {\ vec {j}} \ times {\ vec {B}} dV.} {\ displaystyle d {\ vec {F}} = {\ vec {j}} \ times {\ vec {B}} dV.}

If the current flows through a thin conductor, thenj→dV=Idl→ {\ displaystyle {\ vec {j}} dV = Id {\ vec {l}}} {\ vec j} dV = Id {\ vec l} wheredl→ {\ displaystyle d {\ vec {l}}} d {\ vec l} - "element of length" of the conductor - a vector modulodl {\ displaystyle dl} dl and coinciding in direction with the current. Then the previous equality can be rewritten as follows:

StrengthdF→ {\ displaystyle d {\ vec {F}}} d {\ vec F} with which a magnetic field acts on an elementdl→ {\ displaystyle d {\ vec {l}}} d {\ vec l} a conductor with a current in a magnetic field is directly proportional to the strength of the currentI {\ displaystyle I} I in the conductor and the vector product of the length elementdl→ {\ displaystyle d {\ vec {l}}} d {\ vec l} magnetic induction conductorB→ {\ displaystyle {\ vec {B}}} {\ vec {B}} :

dF→=Idl→×B→.{\ displaystyle d {\ vec {F}} = Id {\ vec {l}} \ times {\ vec {B}}.} d {\ vec F} = Id {\ vec l} \ times {\ vec B}.

Direction of forcedF→ {\ displaystyle d {\ vec {F}}} d {\ vec F} determined by the rule of calculation of the vector product , which is convenient to remember using the rule of the left hand .

The Ampere force module can be found by the formula:

dF=IBdlsin⁡α,{\ displaystyle dF = IBdl \ sin \ alpha,} {\ displaystyle dF = IBdl \ sin \ alpha,}

Whereα {\ displaystyle \ alpha} \ alpha - the angle between the magnetic induction vector and the direction along which the current flows.

StrengthF {\ displaystyle F} F maximum when the conductor with current is perpendicular to the magnetic induction lines (α=90∘,sin⁡α=one {\ displaystyle \ alpha = 90 ^ {{\ circ}, \ sin \ alpha = 1} \ alpha = 90 ^ {\ circ}, \ sin \ alpha = 1 ):

F=BLI{\ displaystyle F = BLI} {\ displaystyle F = BLI} whereL {\ displaystyle L} L - conductor length.

Two parallel conductors

Two endless parallel conductors in vacuum

The most famous example illustrating the power of Ampere is the following problem. In a vacuum at a distancer {\ displaystyle r} r from each other there are two endless parallel conductors in which currents flow in the same directionIone {\ displaystyle I_ {1}}   andI2 {\ displaystyle I_ {2}}   . It is required to find the force acting per unit length of the conductor.

In accordance with the law of Bio - Savard - Laplace endless conductor with currentIone {\ displaystyle I_ {1}}   at a point in the distancer {\ displaystyle r}   creates a magnetic field with induction

Bone(r)=μ0fourπ2Ioner,{\ displaystyle B_ {1} (r) = {\ frac {\ mu _ {0}} {4 \ pi}} {\ frac {2I_ {1}} {r}},}  

Whereμ0 {\ displaystyle \ mu _ {0}}   - magnetic constant .

Now, according to Ampere's law, we will find the force with which the first conductor acts on the second:

dF→one-2=I2dl→×B→one(r).{\ displaystyle d {\ vec {F}} _ {1-2} = I_ {2} d {\ vec {l}} \ times {\ vec {B}} _ {1} (r).}  

By the gimlet rule,dF→one-2 {\ displaystyle d {\ vec {F}} _ {1-2}}   directed towards the first conductor (similarly fordF→2-one {\ displaystyle d {\ vec {F}} _ {2-1}}   , which means that the conductors are attracted).

The module of this force (r {\ displaystyle r}   - distance between conductors):

dFone-2=μ0fourπ2IoneI2rdl.{\ displaystyle dF_ {1-2} = {\ frac {\ mu _ {0}} {4 \ pi}} {\ frac {2I_ {1} I_ {2}} {r}} dl.}  

We integrate along the length of the conductor sectionL {\ displaystyle L}   (limits of integration byl {\ displaystyle l}   from 0 toL {\ displaystyle L}   ):

Fone-2=μ0fourπ2IoneI2r⋅L.{\ displaystyle F_ {1-2} = {\ frac {\ mu _ {0}} {4 \ pi}} {\ frac {2I_ {1} I_ {2}} {r}} \ cdot L.}  

If aL {\ displaystyle L}   - unit length, this expression specifies the desired force of interaction.

The resulting formula is used in the SI to establish the numerical value of the magnetic constantμ0 {\ displaystyle \ mu _ {0}}   . Indeed, the ampere , which is one of the basic SI units, is defined therein as “the force of unchanging current, which, when passing along two parallel straight conductors of infinite length and negligibly small area of ​​circular cross-section, located in vacuum at a distance of 1 meter one from another, caused for each section of a conductor with a length of 1 meter, an interaction force equal to 2⋅10 −7 Newtons ” [1] .

Thus, from the resulting formula and the definition of ampere, it follows that the magnetic constantμ0 {\ displaystyle \ mu _ {0}}   equalsfourπ×ten-7 {\ displaystyle 4 \ pi \ times 10 ^ {- 7}}   H / A² or, which is the same,fourπ×ten-7 {\ displaystyle 4 \ pi \ times 10 ^ {- 7}}   GN / m exactly .

Manifestations

  • Electrodynamic deformation of tires (conductors) of a three-phase alternating current at substations under the influence of short-circuit currents.
  • Spreading the conductor railgun when fired.

Application

  • Any nodes in electrical engineering, where under the action of an electromagnetic field there is a movement of any elements, use the Ampere law. The most widespread and used in almost all technical constructions unit, based on its work based on the law of Ampere - is the electric motor, or, which is structurally almost the same, the generator.

It is under the action of the Ampere force that the rotor rotates, since its stator is affected by the magnetic field of the stator, setting in motion. Any vehicles on the electric coil to drive the shafts on which the wheels are located use the Ampere force (trams, electric cars, electric trains, etc.). Also, the magnetic field sets in motion the mechanisms of electric caps (electric doors, sliding gates, elevator doors). In other words, any devices that run on electricity and have moving parts are based on the operation of Ampere's law.

  • It also finds application in many other types of electrical engineering, for example, in a loudspeaker. In a loudspeaker or speaker, a permanent magnet is used to excite a membrane that forms sound vibrations. Under the action of an electromagnetic field created by a nearby conductor with current, it is influenced by the Ampere force, which varies in accordance with the desired sound frequency.
  • The principle of operation of electromechanical machines (the movement of the rotor winding relative to the stator winding).
  • Electrodynamic plasma compression, for example, in tokamaks , Z-pinch installations.
  • Electrodynamic pressing method .

History

In 1820, Hans Christian Oersted discovered that the wire through which current flows creates a magnetic field and causes the compass needle to deflect. He noted that the magnetic field is perpendicular to the current, and not parallel to it, as one would expect. Ampere, inspired by the demonstration of Oersted's experience, found that two parallel conductors, through which current flows, attract or repel, depending on whether current flows along one or the other sides. Thus, the current not only produces a magnetic field, but a magnetic field acts on the current. Already a week after Oersted announced his experience, Amper offered an explanation: the conductor acts on the magnet, because the magnet current flows through many small closed trajectories [2] [3] .

Ampere's power and Newton's third law

Let there be two thin conductors with currentsIone {\ displaystyle I_ {1}}   andI2 {\ displaystyle I_ {2}}   given by curvesCone {\ displaystyle C_ {1}}   andC2 {\ displaystyle C_ {2}}   . The curves themselves can be given by radius vectors.rone {\ displaystyle \ mathbf {r} _ {1}}   andr2 {\ displaystyle \ mathbf {r} _ {2}}   . Let us find the force acting directly on the current element of one wire from the current element of another wire. According to the law of Bio - Savard - Laplace current elementIonedrone {\ displaystyle I_ {1} \ mathrm {d} \ mathbf {r} _ {1}}   located atrone {\ displaystyle \ mathbf {r} _ {1}}   creates atr2 {\ displaystyle \ mathbf {r} _ {2}}   elementary magnetic fielddBone(r2)=μ0fourπIone[drone,r2-rone]|r2-rone|3 {\ displaystyle \ mathrm {d} \ mathbf {B} _ {1} (\ mathbf {r} _ {2}) = {\ mu _ {0} \ over 4 \ pi} {\ frac {I_ {1} [\ mathrm {d} \ mathbf {r} _ {1}, \ mathbf {r} _ {2} - \ mathbf {r} _ {1}}} {| \ mathbf {r} _ {2} - \ mathbf {r} _ {1} | ^ {3}}}}   . According to Ampere's law, the force acting from the fielddBone(r2) {\ displaystyle \ mathrm {d} \ mathbf {B} _ {1} (\ mathbf {r} _ {2})}   on current elementI2dr2 {\ displaystyle I_ {2} \ mathrm {d} \ mathbf {r} _ {2}}   located atr2 {\ displaystyle \ mathbf {r} _ {2}}   equal to

d2F12=I2dr2×dBone(r2)=μ0IoneI2fourπ[dr2,[drone,r2-rone]]|r2-rone|3.{\ displaystyle \ mathrm {d} ^ {2} \ mathbf {F} _ {12} = I_ {2} \ mathrm {d} \ mathbf {r} _ {2} \ times \ mathrm {d} \ mathbf { B} _ {1} (\ mathbf {r} _ {2}) = {\ mu _ {0} I_ {1} I_ {2} \ over 4 \ pi} {\ frac {[\ mathrm {d} \ mathbf {r} _ {2}, [\ mathrm {d} \ mathbf {r} _ {1}, \ mathbf {r} _ {2} - \ mathbf {r} _ {1}]]} {| \ mathbf {r} _ {2} - \ mathbf {r} _ {1} | ^ {3}}}.}  

Current elementI2dr2 {\ displaystyle I_ {2} \ mathrm {d} \ mathbf {r} _ {2}}   located atr2 {\ displaystyle \ mathbf {r} _ {2}}   creates atrone {\ displaystyle \ mathbf {r} _ {1}}   elementary magnetic field

dB2(rone)=μ0fourπI2[dr2,rone-r2]|r2-rone|3{\ displaystyle \ mathrm {d} \ mathbf {B} _ {2} (\ mathbf {r} _ {1}) = {\ mu _ {0} \ over 4 \ pi} {\ frac {I_ {2} [\ mathrm {d} \ mathbf {r} _ {2}, \ mathbf {r} _ {1} - \ mathbf {r} _ {2}} {| \ mathbf {r} _ {2} - \ mathbf {r} _ {1} | ^ {3}}}}   .

Ampere force acting from the fielddB2(rone) {\ displaystyle \ mathrm {d} \ mathbf {B} _ {2} (\ mathbf {r} _ {1})}   on current elementIonedrone {\ displaystyle I_ {1} \ mathrm {d} \ mathbf {r} _ {1}}   located atrone {\ displaystyle \ mathbf {r} _ {1}}   equal to

d2F21=Ionedrone×dB2(rone)=μ0IoneI2fourπ[drone,[dr2,rone-r2]]|r2-rone|3.{\ displaystyle \ mathrm {d} ^ {2} \ mathbf {F} _ {21} = I_ {1} \ mathrm {d} \ mathbf {r} _ {1} \ times \ mathrm {d} \ mathbf { B} _ {2} (\ mathbf {r} _ {1}) = {\ mu _ {0} I_ {1} I_ {2} \ over 4 \ pi} {\ frac {[\ mathrm {d} \ mathbf {r} _ {1}, [\ mathrm {d} \ mathbf {r} _ {2}, \ mathbf {r} _ {1} - \ mathbf {r} _ {2}]]} {| \ mathbf {r} _ {2} - \ mathbf {r} _ {1} | ^ {3}}}.}  

In general, for arbitraryrone {\ displaystyle \ mathbf {r} _ {1}}   andr2 {\ displaystyle \ mathbf {r} _ {2}}   strengthd2F12 {\ displaystyle \ mathrm {d} ^ {2} \ mathbf {F} _ {12}}   andd2F21 {\ displaystyle \ mathrm {d} ^ {2} \ mathbf {F} _ {21}}   not even collinear, which means they do not obey Newton's third law:d2F12+d2F21≠0 {\ displaystyle \ mathrm {d} ^ {2} \ mathbf {F} _ {12} + \ mathrm {d} ^ {2} \ mathbf {F} _ {21} \ neq 0}   . However, nothing wrong with that. Physicists have proven that direct current can flow only in a closed loop. Therefore, the third law of Newton must act only for the forces with which the two closed conductors interact with the current. Let us make sure that for two such conductors, Newton's third law is satisfied.

Let the curvesCone {\ displaystyle C_ {1}}   andC2 {\ displaystyle C_ {2}}   are closed. Then currentIone {\ displaystyle I_ {1}}   creates at the pointr2 {\ displaystyle \ mathbf {r} _ {2}}   a magnetic field

Bone(r2)=μ0Ionefourπ∮Cone⁡[drone,r2-rone]|r2-rone|3,{\ displaystyle \ mathbf {B} _ {1} (\ mathbf {r} _ {2}) = {\ mu _ {0} I_ {1} \ over 4 \ pi} \ oint \ limits _ {\ mathbb { C} _ {1}} {\ frac {[\ mathrm {d} \ mathbf {r} _ {1}, \ mathbf {r} _ {2} - \ mathbf {r} _ {1}]} {| \ mathbf {r} _ {2} - \ mathbf {r} _ {1} | ^ {3}},}  

where is the integration byCone {\ displaystyle C_ {1}}   produced in the direction of current flowIone {\ displaystyle I_ {1}}   . Ampere force acting from the fieldBone(r2) {\ displaystyle \ mathbf {B} _ {1} (\ mathbf {r} _ {2})}   on contourC2 {\ displaystyle C_ {2}}   with currentI2 {\ displaystyle I_ {2}}   equal to

F12=∮C2⁡(I2dr2×Bone(r2))=∮C2⁡(I2dr2×μ0Ionefourπ∮Cone⁡[drone,r2-rone]|r2-rone|3)=μ0IoneI2fourπ∮C2⁡∮Cone⁡[dr2,[drone,r2-rone]]|r2-rone|3,{\ displaystyle \ mathbf {F} _ {12} = \ oint \ limits _ {\ mathbb {C} _ {2}} (I_ {2} \ mathrm {d} \ mathbf {r} _ {2} \ times \ mathbf {B} _ {1} (\ mathbf {r} _ {2})) = \ oint \ limits _ {\ mathbb {C} _ {2}} (I_ {2} \ mathrm {d} \ mathbf {r} _ {2} \ times {\ mu _ {0} I_ {1} \ over 4 \ pi} \ oint \ limits _ {\ mathbb {C} _ {1}} {\ frac {[\ mathrm { d} \ mathbf {r} _ {1}, \ mathbf {r} _ {2} - \ mathbf {r} _ {1}]} {| \ mathbf {r} _ {2} - \ mathbf {r} _ {1} | ^ {3}}}) = {\ mu _ {0} I_ {1} I_ {2} \ over 4 \ pi} \ oint \ limits _ {\ mathbb {C} _ {2}} \ oint \ limits _ {\ mathbb {C} _ {1}} {\ frac {[\ mathrm {d} \ mathbf {r} _ {2}, [\ mathrm {d} \ mathbf {r} _ {1 }, \ mathbf {r} _ {2} - \ mathbf {r} _ {1}]]} {| \ mathbf {r} _ {2} - \ mathbf {r} _ {1} | ^ {3} }},}  

where is the integration byC2 {\ displaystyle C_ {2}}   produced in the direction of current flowI2 {\ displaystyle I_ {2}}   . Characteristically, the order of integration does not matter.

Similarly, the Ampere force acting from the fieldB2(rone) {\ displaystyle \ mathbf {B} _ {2} (\ mathbf {r} _ {1})}   generated by currentI2 {\ displaystyle I_ {2}}   on the contourCone {\ displaystyle C_ {1}}   with currentIone {\ displaystyle I_ {1}}   equal to

F21=∮Cone⁡(Ionedrone×B2(rone))=μ0IoneI2fourπ∮Cone⁡∮C2⁡[drone,[dr2,rone-r2]]|r2-rone|3=∮Cone⁡∮C2⁡d2F21.{\ displaystyle \ mathbf {F} _ {21} = \ oint \ limits _ {\ mathbb {C} _ {1}} (I_ {1} \ mathrm {d} \ mathbf {r} _ {1} \ times \ mathbf {B} _ {2} (\ mathbf {r} _ {1})) = {\ mu _ {0} I_ {1} I_ {2} \ over 4 \ pi} \ oint \ limits _ {\ mathbb {C} _ {1}} \ oint \ limits _ {\ mathbb {C} _ {2}} {\ frac {[\ mathrm {d} \ mathbf {r} _ {1}, [\ mathrm {d } \ mathbf {r} _ {2}, \ mathbf {r} _ {1} - \ mathbf {r} _ {2}]]} {| \ mathbf {r} _ {2} - \ mathbf {r} _ {1} | ^ {3}}} = \ oint \ limits _ {\ mathbb {C} _ {1}} \ oint \ limits _ {\ mathbb {C} _ {2}} \ mathrm {d} ^ {2} \ mathbf {F} _ {21}.}  

EqualityF12+F21=0 {\ displaystyle \ mathbf {F} _ {12} + \ mathbf {F} _ {21} = 0}   equivalent to equality∮C2⁡∮Cone⁡[dr2,[drone,r2-rone]]|r2-rone|3=∮Cone⁡∮C2⁡[drone,[dr2,r2-rone]]|r2-rone|3 {\ displaystyle \ oint \ limits _ {\ mathbb {C} _ {2}} \ oint \ limits _ {\ mathbb {C} _ {1}} {\ frac {[\ mathrm {d} \ mathbf {r} _ {2}, [\ mathrm {d} \ mathbf {r} _ {1}, \ mathbf {r} _ {2} - \ mathbf {r} _ {1}]]} {| \ mathbf {r} _ {2} - \ mathbf {r} _ {1} | ^ {3}} = \ oint \ limits _ {\ mathbb {C} _ {1}} \ oint \ limits _ {\ mathbb {C} _ {2}} {\ frac {[\ mathrm {d} \ mathbf {r} _ {1}, [\ mathrm {d} \ mathbf {r} _ {2}, \ mathbf {r} _ {2} - \ mathbf {r} _ {1}]]} {| \ mathbf {r} _ {2} - \ mathbf {r} _ {1} | ^ {3}}}   .

To prove this last equality, we note that the expression for the Ampere force is very similar to the expression for the circulation of a magnetic field along a closed contour, in which the outer scalar product is replaced by a vector product. Then it is clear in which direction to move.

Using the Lagrange identity, the double vector product on the left side of the equality to be proved can be written as:

[dr2,[drone,r2-rone]]=drone(dr2,r2-rone)-(r2-rone)(dr2,drone).{\ displaystyle [\ mathrm {d} \ mathbf {r} _ {2}, [\ mathrm {d} \ mathbf {r} _ {1}, \ mathbf {r} _ {2} - \ mathbf {r} _ {1}]] = \ mathrm {d} \ mathbf {r} _ {1} (\ mathrm {d} \ mathbf {r} _ {2}, \ mathbf {r} _ {2} - \ mathbf { r} _ {1}) - (\ mathbf {r} _ {2} - \ mathbf {r} _ {1}) (\ mathrm {d} \ mathbf {r} _ {2}, \ mathrm {d} \ mathbf {r} _ {1}).}  

Then the left side of the equality being proved takes the form:

∮C2⁡∮Cone⁡[dr2,[drone,r2-rone]]|r2-rone|3=∮Cone⁡∮C2⁡drone(dr2,r2-rone)|r2-rone|3-∮Cone⁡∮C2⁡(r2-rone)(dr2,drone)|r2-rone|3.{\ displaystyle \ oint \ limits _ {\ mathbb {C} _ {2}} \ oint \ limits _ {\ mathbb {C} _ {1}} {\ frac {[\ mathrm {d} \ mathbf {r} _ {2}, [\ mathrm {d} \ mathbf {r} _ {1}, \ mathbf {r} _ {2} - \ mathbf {r} _ {1}]]} {| \ mathbf {r} _ {2} - \ mathbf {r} _ {1} | ^ {3}} = \ oint \ limits _ {\ mathbb {C} _ {1}} \ oint \ limits _ {\ mathbb {C} _ {2}} {\ frac {\ mathrm {d} \ mathbf {r} _ {1} (\ mathrm {d} \ mathbf {r} _ {2}, \ mathbf {r} _ {2} - \ mathbf {r} _ {1})} {| \ mathbf {r} _ {2} - \ mathbf {r} _ {1} | ^ {3}} - \ oint \ limits _ {\ mathbb {C} _ {1}} \ oint \ limits _ {\ mathbb {C} _ {2}} {\ frac {(\ mathbf {r} _ {2} - \ mathbf {r} _ {1}) (\ mathrm {d } \ mathbf {r} _ {2}, \ mathrm {d} \ mathbf {r} _ {1})} {| \ mathbf {r} _ {2} - \ mathbf {r} _ {1} | ^ {3}}}.}  

Consider separately the integral∮Cone⁡∮C2⁡drone(dr2,r2-rone)|r2-rone|3 {\ displaystyle \ oint \ limits _ {\ mathbb {C} _ {1}} \ oint \ limits _ {\ mathbb {C} _ {2}} {\ frac {\ mathrm {d} \ mathbf {r} _ {1} (\ mathrm {d} \ mathbf {r} _ {2}, \ mathbf {r} _ {2} - \ mathbf {r} _ {1})} {| \ mathbf {r} _ {2 } - \ mathbf {r} _ {1} | ^ {3}}}}   which can be rewritten as follows:

∮Cone⁡∮C2⁡drone(dr2,r2-rone)|r2-rone|3=∮Cone⁡drone∮C2⁡(r2-rone,d(r2-rone))|r2-rone|3.{\ displaystyle \ oint \ limits _ {\ mathbb {C} _ {1}} \ oint \ limits _ {\ mathbb {C} _ {2}} {\ frac {\ mathrm {d} \ mathbf {r} _ {1} (\ mathrm {d} \ mathbf {r} _ {2}, \ mathbf {r} _ {2} - \ mathbf {r} _ {1})} {| \ mathbf {r} _ {2 } - \ mathbf {r} _ {1} | ^ {3}}} = \ oint \ limits _ {\ mathbb {C} _ {1}} \ mathrm {d} \ mathbf {r} _ {1} \ oint \ limits _ {\ mathbb {C} _ {2}} {\ frac {(\ mathbf {r} _ {2} - \ mathbf {r} _ {1}, \ mathrm {d} (\ mathbf {r } _ {2} - \ mathbf {r} _ {1}))} {| \ mathbf {r} _ {2} - \ mathbf {r} _ {1} | ^ {3}}.}  

By making the substitution of a variable in the inner integral onr=r2-rone {\ displaystyle \ mathbf {r} = \ mathbf {r} _ {2} - \ mathbf {r} _ {1}}   where is the vectorr {\ displaystyle \ mathbf {r}}   varies in a closed loopC2′ {\ displaystyle C_ {2} '}   , we find that the internal integral is a circulation of a gradient field along a closed loop. So, it is equal to zero:

∮C2⁡(r2-rone,d(r2-rone))|r2-rone|3=∮C2′⁡(r,dr)|r|3=-∮C2′⁡(grad(one|r|),dr)=0{\ displaystyle \ oint \ limits _ {\ mathbb {C} _ {2}} {\ frac {(\ mathbf {r} _ {2} - \ mathbf {r} _ {1}, \ mathrm {d} ( \ mathbf {r} _ {2} - \ mathbf {r} _ {1}))} {| \ mathbf {r} _ {2} - \ mathbf {r} _ {1} | ^ {3}} = \ oint \ limits _ {\ mathbb {C} _ {2} '} {\ frac {(\ mathbf {r}, \ mathrm {d} \ mathbf {r})} {| \ mathbf {r} | ^ {3}}} = - \ oint \ limits _ {\ mathbb {C} _ {2} '} (\ mathrm {grad} ({\ frac {1} {| \ mathbf {r} |}}), \ mathrm {d} \ mathbf {r}) = 0.}  

Hence, the entire double curvilinear integral is zero. In that case, for strengthF12 {\ displaystyle \ mathbf {F} _ {12}}   you can write:

F12=μ0IoneI2 four π ∮ C one ⁡ ∮ C 2 ⁡ ( r one - r 2 ) ( d r 2 , d r one ) | r 2 - r one | 3 .{\ displaystyle \ mathbf {F} _ {12} = {\ mu _ {0} I_ {1} I_ {2} \ over 4 \ pi} \ oint \ limits _ {\ mathbb {C} _ {1}} \ oint \ limits _ {\ mathbb {C} _ {2}} {\ frac {(\ mathbf {r} _ {1} - \ mathbf {r} _ {2}) (\ mathrm {d} \ mathbf { r} _ {2}, \ mathrm {d} \ mathbf {r} _ {1})} {| \ mathbf {r} _ {2} - \ mathbf {r} _ {1} | ^ {3}} }.}  

Expression for powerF21 {\ displaystyle \ mathbf {F} _ {21}}   can be obtained from the expression for strengthF12 {\ displaystyle \ mathbf {F} _ {12}}   , just on the basis of symmetry considerations. To do this, we will replace the indices: 2 change to 1, and 1 to 2. In this case, for strengthF21 {\ displaystyle \ mathbf {F} _ {21}}   you can write:

F21=μ0IoneI2fourπ∮Cone⁡∮C2⁡(r2-rone)(dr2,drone)|r2-rone|3.{\ displaystyle \ mathbf {F} _ {21} = {\ mu _ {0} I_ {1} I_ {2} \ over 4 \ pi} \ oint \ limits _ {\ mathbb {C} _ {1}} \ oint \ limits _ {\ mathbb {C} _ {2}} {\ frac {(\ mathbf {r} _ {2} - \ mathbf {r} _ {1}) (\ mathrm {d} \ mathbf { r} _ {2}, \ mathrm {d} \ mathbf {r} _ {1})} {| \ mathbf {r} _ {2} - \ mathbf {r} _ {1} | ^ {3}} }.}  

Now it is clear thatF12=-F21 {\ displaystyle \ mathbf {F} _ {12} = - \ mathbf {F} _ {21}}   . Hence, the Ampere force satisfies Newton's third law in the case of closed conductors.

Grassman's Law

The law of interaction of two elementary electric currents, known as Ampere's law, was in fact later proposed by Grassmann. The original Ampere's law had a slightly different form: the force acting from the current elementIonedrone {\ displaystyle I_ {1} \ mathrm {d} \ mathbf {r} _ {1}}   located atrone {\ displaystyle \ mathbf {r} _ {1}}   on current elementI2dr2 {\ displaystyle I_ {2} \ mathrm {d} \ mathbf {r} _ {2}}   located atr2 {\ displaystyle \ mathbf {r} _ {2}}   equal to

d2F12=μ0IoneI2fourπ(rone-r2)|rone-r2|3(2(drone,dr2)-3(rone-r2,drone)(rone-r2,dr2)|rone-r2|2).{\ displaystyle \ mathrm {d} ^ {2} \ mathbf {F} _ {12} = {\ mu _ {0} I_ {1} I_ {2} \ over 4 \ pi} {\ frac {(\ mathbf {r} _ {1} - \ mathbf {r} _ {2})} {| \ mathbf {r} _ {1} - \ mathbf {r} _ {2} | ^ {3}} (2 ( \ mathrm {d} \ mathbf {r} _ {1}, \ mathrm {d} \ mathbf {r} _ {2}) - 3 {\ frac {(\ mathbf {r} _ {1} - \ mathbf { r} _ {2}, \ mathrm {d} \ mathbf {r} _ {1}) (\ mathbf {r} _ {1} - \ mathbf {r} _ {2}, \ mathrm {d} \ mathbf {r} _ {2})} {| \ mathbf {r} _ {1} - \ mathbf {r} _ {2} | ^ {2}}).}  

The force acting from the current elementI2dr2 {\ displaystyle I_ {2} \ mathrm {d} \ mathbf {r} _ {2}}   located atr2 {\ displaystyle \ mathbf {r} _ {2}}   on current elementIonedrone {\ displaystyle I_ {1} \ mathrm {d} \ mathbf {r} _ {1}}   located atrone {\ displaystyle \ mathbf {r} _ {1}}   equal to

d2F21=μ0IoneI2fourπ(r2-rone)|rone-r2|3(2(drone,dr2)-3(rone-r2,drone)(rone-r2,dr2)|rone-r2|2).{\ displaystyle \ mathrm {d} ^ {2} \ mathbf {F} _ {21} = {\ mu _ {0} I_ {1} I_ {2} \ over 4 \ pi} {\ frac {(\ mathbf {r} _ {2} - \ mathbf {r} _ {1})} {| \ mathbf {r} _ {1} - \ mathbf {r} _ {2} | ^ {3}} (2 ( \ mathrm {d} \ mathbf {r} _ {1}, \ mathrm {d} \ mathbf {r} _ {2}) - 3 {\ frac {(\ mathbf {r} _ {1} - \ mathbf { r} _ {2}, \ mathrm {d} \ mathbf {r} _ {1}) (\ mathbf {r} _ {1} - \ mathbf {r} _ {2}, \ mathrm {d} \ mathbf {r} _ {2})} {| \ mathbf {r} _ {1} - \ mathbf {r} _ {2} | ^ {2}}).}  

Formula powerd2F21 {\ displaystyle \ mathrm {d} ^ {2} \ mathbf {F} _ {21}}   can be obtained from the formula of forced2F12 {\ displaystyle \ mathrm {d} ^ {2} \ mathbf {F} _ {12}}   just for symmetry reasons, i.e. replacing indices: 2 by 1, and 1 by 2. It is easy to see thatd2F21+d2F12=0 {\ displaystyle \ mathrm {d} ^ {2} \ mathbf {F} _ {21} + \ mathrm {d} ^ {2} \ mathbf {F} _ {12} = 0}   i.e. The original law of Ampere satisfies the third law of Newton already at the stage of the differential form. Therefore, verification of this law in the integral form is not required.

It can be proved that in the integral form of the original Ampere law, the forces with which two closed conductors interact with direct currents are the same as in Grassmann's law.

Evidence

To prove it, we write down the powerF21 {\ displaystyle \ mathbf {F} _ {21}}   in the following form:

F21=μ0IoneI2fourπ∮Cone⁡∮C2⁡(r2-rone)(dr2,drone)|r2-rone|3+μ0IoneI2fourπ∮Cone⁡∮C2⁡(r2-rone)|r2-rone|3((drone,dr2)-3(r2-rone,drone)(r2-rone,dr2)|rone-r2|2).{\ displaystyle \ mathbf {F} _ {21} = {\ mu _ {0} I_ {1} I_ {2} \ over 4 \ pi} \ oint \ limits _ {\ mathbb {C} _ {1}} \ oint \ limits _ {\ mathbb {C} _ {2}} {\ frac {(\ mathbf {r} _ {2} - \ mathbf {r} _ {1}) (\ mathrm {d} \ mathbf { r} _ {2}, \ mathrm {d} \ mathbf {r} _ {1})} {| \ mathbf {r} _ {2} - \ mathbf {r} _ {1} | ^ {3}} } + {\ mu _ {0} I_ {1} I_ {2} \ over 4 \ pi} \ oint \ limits _ {\ mathbb {C} _ {1}} \ oint \ limits _ {\ mathbb {C} _ {2}} {\ frac {(\ mathbf {r} _ {2} - \ mathbf {r} _ {1})} {| \ mathbf {r} _ {2} - \ mathbf {r} _ { 1} | ^ {3}}} ((\ mathrm {d} \ mathbf {r} _ {1}, \ mathrm {d} \ mathbf {r} _ {2}) - 3 {\ frac {(\ mathbf {r} _ {2} - \ mathbf {r} _ {1}, \ mathrm {d} \ mathbf {r} _ {1}) (\ mathbf {r} _ {2} - \ mathbf {r} _ {1}, \ mathrm {d} \ mathbf {r} _ {2})} {| \ mathbf {r} _ {1} - \ mathbf {r} _ {2} | ^ {2}}}). }  

Obviously, in order for the force to be the same as in the Grassmann law, it is sufficient to prove that the second term is zero. Further, the second term will be considered without any coefficients in front of the signs of the integrals, since these coefficients in general are not equal to zero, and therefore the double curvilinear integral must be equal to zero.

So, we denoteP=∮Cone⁡∮C2⁡(r2-rone)|rone-r2|3((drone,dr2)-3(r2-rone,drone)(r2-rone,dr2)|rone-r2|2) {\ displaystyle \ mathbf {P} = \ oint \ limits _ {\ mathbb {C} _ {1}} \ oint \ limits _ {\ mathbb {C} _ {2}} {\ frac {(\ mathbf {r } _ {2} - \ mathbf {r} _ {1})} {| \ mathbf {r} _ {1} - \ mathbf {r} _ {2} | ^ {3}} ((\ mathrm { d} \ mathbf {r} _ {1}, \ mathrm {d} \ mathbf {r} _ {2}) - 3 {\ frac {(\ mathbf {r} _ {2} - \ mathbf {r} _ {1}, \ mathrm {d} \ mathbf {r} _ {1}) (\ mathbf {r} _ {2} - \ mathbf {r} _ {1}, \ mathrm {d} \ mathbf {r} _ {2})} {| \ mathbf {r} _ {1} - \ mathbf {r} _ {2} | ^ {2}})}   . And you need to prove thatP=0 {\ displaystyle \ mathbf {P} = 0}  

Assume thatP {\ displaystyle \ mathbf {P}}   integration is done first along the contourC2 {\ displaystyle C_ {2}}   . In this case, it is possible to make a change of the variable:r=r2-rone {\ displaystyle \ mathbf {r} = \ mathbf {r} _ {2} - \ mathbf {r} _ {1}}   where is the vectorr {\ displaystyle \ mathbf {r}}   varies in a closed loopC2′ {\ displaystyle C_ {2} '}   . Then you can write

P=∮Cone⁡∮C2′⁡r|r|3((drone,dr)-3(r,drone)(r,dr)|r|2).{\ displaystyle \ mathbf {P} = \ oint \ limits _ {\ mathbb {C} _ {1}} \ oint \ limits _ {\ mathbb {C} _ {2} '} {\ frac {\ mathbf {r }} {| \ mathbf {r} | ^ {3}}} ((\ mathrm {d} \ mathbf {r} _ {1}, \ mathrm {d} \ mathbf {r}) -3 {\ frac { (\ mathbf {r}, \ mathrm {d} \ mathbf {r} _ {1}) (\ mathbf {r}, \ mathrm {d} \ mathbf {r})} {| \ mathbf {r} | ^ {2}}}).}  

Now when integrating over the contourC2′ {\ displaystyle C_ {2} '}   get some vector function fromrone {\ displaystyle \ mathbf {r} _ {1}}   which will then be integrated over the contourCone {\ displaystyle C_ {1}}   .

You can prove thatP {\ displaystyle \ mathbf {P}}   can be represented asP=-∮Cone⁡∮C2′⁡r(grad(grad(one|r|),dr),drone) {\ displaystyle \ mathbf {P} = - \ oint \ limits _ {\ mathbb {C} _ {1}} \ oint \ limits _ {\ mathbb {C} _ {2} '} \ mathbf {r} (\ mathrm {grad} (\ mathrm {grad} ({\ frac {1} {| \ mathbf {r} |}}), \ mathrm {d} \ mathbf {r}), \ mathrm {d} \ mathbf {r } _{one})}   where both gradients are taken over the variabler {\ displaystyle \ mathbf {r}}   . The proof is trivial, it suffices to carry out the procedure for taking gradients.

Further, according to the Lagrange identity we can write down

grad(grad(one|r|),dr)=∇(grad(one|r|),dr)=[dr,[∇,grad(one|r|)]]+(dr,∇)grad(one|r|)==0+∂grad(one|r|)∂xdx+∂grad(one|r|)∂ydy+∂grad(one|r|)∂zdz=d(grad(one|r|)).{\ displaystyle {\ begin {aligned} & & mathrm {grad} (\ mathrm {grad} ({\ frac {1} {| \ mathbf {r} |}}), \ mathrm {d} \ mathbf {r} ) = \ nabla (\ mathrm {grad} ({\ frac {1} {| \ mathbf {r} |}}), \ mathrm {d} \ mathbf {r}) = [\ mathrm {d} \ mathbf { r}, [\ nabla, \ mathrm {grad} ({\ frac {1} {| \ mathbf {r} |}})]] + (\ mathrm {d} \ mathbf {r}, \ nabla) \ mathrm {grad} ({\ frac {1} {| \ mathbf {r} |}}) = \\ & = 0 + {\ partial \ mathrm {grad} ({\ frac {1} {| \ mathbf {r} |}}) \ over \ partial x} \ mathrm {d} x + {\ partial \ mathrm {grad} ({\ frac {1} {| \ mathbf {r} |}}) \ over \ partial y} \ mathrm {d} y + {\ partial \ mathrm {grad} ({\ frac {1} {| \ mathbf {r} |}}) \ over \ partial z} \ mathrm {d} z = \ mathrm {d} (\ mathrm {grad} ({\ frac {1} {| \ mathbf {r} |}})) \\\ end {aligned}}.}  

Here, zero turned out as a rotor of a gradient field. The result is a complete differential of the vector function.

grad(one|r|){\ displaystyle \ mathrm {grad} ({\ frac {1} {| \ mathbf {r} |}})}   . So nowP {\ displaystyle \ mathbf {P}}   can be represented asP=-∮Cone⁡∮C2′⁡r(d(grad(one|r|)),drone) {\ displaystyle \ mathbf {P} = - \ oint \ limits _ {\ mathbb {C} _ {1}} \ oint \ limits _ {\ mathbb {C} _ {2} '} \ mathbf {r} (\ mathrm {d} (\ mathrm {grad} ({\ frac {1} {| \ mathbf {r} |}})), \ mathrm {d} \ mathbf {r} _ {1})}   . This integral can be taken by integrating each projection separately. For example, we integrate the projection x.

Px=-∮Cone⁡∮C2′⁡x(d(grad(one|r|)),drone)=-∮Cone⁡(drone,∮C2′⁡d(xgrad(one|r|))-grad(one|r|)dx).{\ displaystyle P_ {x} = - \ oint \ limits _ {\ mathbb {C} _ {1}} \ oint \ limits _ {\ mathbb {C} _ {2} '} x (\ mathrm {d} ( \ mathrm {grad} ({\ frac {1} {| \ mathbf {r} |}})), \ mathrm {d} \ mathbf {r} _ {1}) = - \ oint \ limits _ {\ mathbb {C} _ {1}} (\ mathrm {d} \ mathbf {r} _ {1}, \ oint \ limits _ {\ mathbb {C} _ {2} '} \ mathrm {d} (x \ mathrm {grad} ({\ frac {1} {| \ mathbf {r} |}})) - \ mathrm {grad} ({\ frac {1} {| \ mathbf {r} |}}) \ mathrm {d } x).}  

The integral of the total differential over any closed loop is zero:∮C2′⁡d(xgrad(one|r|))=0 {\ displaystyle \ oint \ limits _ {\ mathbb {C} _ {2} '} \ mathrm {d} (x \ mathrm {grad} ({\ frac {1} {| \ mathbf {r} |}})) ) = 0}   , soPx {\ displaystyle P_ {x}}   take the form:

Px=∮Cone⁡(drone,∮C2′⁡grad(one|r|)dx)=∮Cone⁡(drone,∮C2⁡rone-r2|rone-r2|3dx2).{\ displaystyle P_ {x} = \ oint \ limits _ {\ mathbb {C} _ {1}} (\ mathrm {d} \ mathbf {r} _ {1}, \ oint \ limits _ {\ mathbb {C } _ {2} '} \ mathrm {grad} ({\ frac {1} {| \ mathbf {r} |}}) \ mathrm {d} x) = \ oint \ limits _ {\ mathbb {C} _ {1}} (\ mathrm {d} \ mathbf {r} _ {1}, \ oint \ limits _ {\ mathbb {C} _ {2}} {\ frac {\ mathbf {r} _ {1} - \ mathbf {r} _ {2}} {| \ mathbf {r} _ {1} - \ mathbf {r} _ {2} | ^ {3}} \ mathrm {d} x_ {2}).}  

This time, you need to integrate the contour first.Cone {\ displaystyle C_ {1}}   . Make a change to the variable:r=rone-r2 {\ displaystyle \ mathbf {r} = \ mathbf {r} _ {1} - \ mathbf {r} _ {2}}   where is the vectorr {\ displaystyle \ mathbf {r}}   varies in a closed loopCone′ {\ displaystyle C_ {1} '}   . Then you can write

Px=∮C2⁡dx2∮Cone′⁡(dr,r|r|3)=-∮C2⁡dx2∮Cone′⁡(dr,grad(one|r|))=0,{\ displaystyle P_ {x} = \ oint \ limits _ {\ mathbb {C} _ {2}} \ mathrm {d} x_ {2} \ oint \ limits _ {\ mathbb {C} _ {1} '} (\ mathrm {d} \ mathbf {r}, {\ frac {\ mathbf {r}} {| \ mathbf {r} | ^ {3}}) = - \ oint \ limits _ {\ mathbb {C} _ {2}} \ mathrm {d} x_ {2} \ oint \ limits _ {\ mathbb {C} _ {1} '} (\ mathrm {d} \ mathbf {r}, \ mathrm {grad} ({ \ frac {1} {| \ mathbf {r} |}})) = 0,}  

where the gradient is taken again by variabler {\ displaystyle \ mathbf {r}}   .

Since in the expression the circulation of the gradient field around the closed contour again appeared,Px=0 {\ displaystyle P_ {x} = 0}   .

Similarly, we can write for the remaining two projections:

Py=-∮Cone⁡∮C2′⁡y(d(grad(one|r|)),drone)=-∮Cone⁡(drone,∮C2′⁡d(ygrad(one|r|))-grad(one|r|)dy)=0,{\ displaystyle P_ {y} = - \ oint \ limits _ {\ mathbb {C} _ {1}} \ oint \ limits _ {\ mathbb {C} _ {2} '} y (\ mathrm {d} ( \ mathrm {grad} ({\ frac {1} {| \ mathbf {r} |}})), \ mathrm {d} \ mathbf {r} _ {1}) = - \ oint \ limits _ {\ mathbb {C} _ {1}} (\ mathrm {d} \ mathbf {r} _ {1}, \ oint \ limits _ {\ mathbb {C} _ {2} '} \ mathrm {d} (y \ mathrm {grad} ({\ frac {1} {| \ mathbf {r} |}})) - \ mathrm {grad} ({\ frac {1} {| \ mathbf {r} |}}) \ mathrm {d } y) = 0,}  
Pz=-∮Cone⁡∮C2′⁡z(d(grad(one|r|)),drone)=-∮Cone⁡(drone,∮C2′⁡d(zgrad(one|r|))-grad(one|r|)dz)=0{\ displaystyle P_ {z} = - \ oint \ limits _ {\ mathbb {C} _ {1}} \ oint \ limits _ {\ mathbb {C} _ {2} '} z (\ mathrm {d} ( \ mathrm {grad} ({\ frac {1} {| \ mathbf {r} |}})), \ mathrm {d} \ mathbf {r} _ {1}) = - \ oint \ limits _ {\ mathbb {C} _ {1}} (\ mathrm {d} \ mathbf {r} _ {1}, \ oint \ limits _ {\ mathbb {C} _ {2} '} \ mathrm {d} (z \ mathrm {grad} ({\ frac {1} {| \ mathbf {r} |}})) - \ mathrm {grad} ({\ frac {1} {| \ mathbf {r} |}}) \ mathrm {d } z) = 0.}  

SoP=0 {\ displaystyle \ mathbf {P} = 0}   .

Maxwell proposed the most general form of the law of interaction of two elementary conductors with a current, in which there is a coefficient k, which cannot be determined without some assumptions, followed from experiments in which the active current forms a closed loop [4] :

d2F12=one2μ0IoneI2fourπ((3-k)(rone-r2)(drone,dr2)|rone-r2|3-3(one-k)(rone-r2)(rone-r2,drone)(rone-r2,dr2)|rone-r2|five--(one+k)drone(rone-r2,dr2)|rone-r2|3-(one+k)dr2(rone-r2,drone)|rone-r2|3).{\ displaystyle \ mathrm {d} ^ {2} \ mathbf {F} _ {12} = {\ frac {1} {2}} {\ mu _ {0} I_ {1} I_ {2} \ over 4 \ pi} \ left ({\ begin {aligned} & & (3-k) {\ frac {(\ mathbf {r} _ {1} - \ mathbf {r} _ {2}) (\ mathrm {d} \ mathbf {r} _ {1}, \ mathrm {d} \ mathbf {r} _ {2})} {| \ mathbf {r} _ {1} - \ mathbf {r} _ {2} | ^ {3 }}} - 3 (1-k) {\ frac {(\ mathbf {r} _ {1} - \ mathbf {r} _ {2}) (\ mathbf {r} _ {1} - \ mathbf {r } _ {2}, \ mathrm {d} \ mathbf {r} _ {1}) (\ mathbf {r} _ {1} - \ mathbf {r} _ {2}, \ mathrm {d} \ mathbf { r} _ {2})} {| \ mathbf {r} _ {1} - \ mathbf {r} _ {2} | ^ {5}}} - \\ & - (1 + k) {\ frac { \ mathrm {d} \ mathbf {r} _ {1} (\ mathbf {r} _ {1} - \ mathbf {r} _ {2}, \ mathrm {d} \ mathbf {r} _ {2}) } {| \ mathbf {r} _ {1} - \ mathbf {r} _ {2} | ^ {3}} - (1 + k) {\ frac {\ mathrm {d} \ mathbf {r} _ {2} (\ mathbf {r} _ {1} - \ mathbf {r} _ {2}, \ mathrm {d} \ mathbf {r} _ {1})} {| \ mathbf {r} _ {1 } - \ mathbf {r} _ {2} | ^ {3}}} \\\ end {aligned}} \ right).}  

In his theory, Ampere tookk=-one {\ displaystyle k = -1}   , Gauss acceptedk=+one {\ displaystyle k = + 1}   , just like Grassmann and Clausius . In non-terrestrial electronic theories, Weber acceptedk=-one {\ displaystyle k = -1}   and Riemann acceptedk=+one {\ displaystyle k = + 1}   . Ritz leftk {\ displaystyle k}   uncertain in its theory.

If takek=-one {\ displaystyle k = -1}   , get an expression for the original law of Ampere. If we takek=+one {\ displaystyle k = + 1}   , we get:

d2F12=μ0IoneI2fourπ((rone-r2)(drone,dr2)|rone-r2|3-drone(rone-r2,dr2)|rone-r2|3-dr2(rone-r2,drone)|rone-r2|3)==μ0IoneI2fourπ([dr2,[drone,r2-rone]]|rone-r2|3-dr2(rone-r2,drone)|rone-r2|3).{\ displaystyle {\ begin {aligned} & & mathrm {d} ^ {2} \ mathbf {F} _ {12} = {\ mu _ {0} I_ {1} I_ {2} \ over 4 \ pi} \ left ({\ frac {(\ mathbf {r} _ {1} - \ mathbf {r} _ {2}) (\ mathrm {d} \ mathbf {r} _ {1}, \ mathrm {d} \ mathbf {r} _ {2})} {| \ mathbf {r} _ {1} - \ mathbf {r} _ {2} | ^ {3}} - {\ frac {\ mathrm {d} \ mathbf {r} _ {1} (\ mathbf {r} _ {1} - \ mathbf {r} _ {2}, \ mathrm {d} \ mathbf {r} _ {2})} {| \ mathbf {r } _ {1} - \ mathbf {r} _ {2} | ^ {3}} - {\ frac {\ mathrm {d} \ mathbf {r} _ {2} (\ mathbf {r} _ {1 } - \ mathbf {r} _ {2}, \ mathrm {d} \ mathbf {r} _ {1})} {| \ mathbf {r} _ {1} - \ mathbf {r} _ {2} | ^ {3}}} \ right) = \\ & = {\ mu _ {0} I_ {1} I_ {2} \ over 4 \ pi} \ left ({\ frac {[\ mathrm {d} \ mathbf {r} _ {2}, [\ mathrm {d} \ mathbf {r} _ {1}, \ mathbf {r} _ {2} - \ mathbf {r} _ {1}]]} {| \ mathbf {r} _ {1} - \ mathbf {r} _ {2} | ^ {3}} - {\ frac {\ mathrm {d} \ mathbf {r} _ {2} (\ mathbf {r} _ {1} - \ mathbf {r} _ {2}, \ mathrm {d} \ mathbf {r} _ {1})} {| \ mathbf {r} _ {1} - \ mathbf {r} _ {2 } | ^ {3}}} \ right) \\\ end {aligned}}.}  

Here, the first two terms were united by the Lagrange identity, while the third term was integrated in closed contours.Cone {\ displaystyle C_ {1}}   andC2 {\ displaystyle C_ {2}}   will give zero. Really,

∮C2⁡∮Cone⁡dr2(rone-r2,drone)|rone-r2|3=[r=rone - r 2 C one → C one ′ ] = ∮ C 2 ⁡ d r 2 ∮ C one ′ ⁡ ( r , d r ) | r | 3 = ∮ C 2 ⁡ d r 2 ∮ C one ′ ⁡ ( g r a d one | r | , d r ) = 0{\ displaystyle \ oint \ limits _ {\ mathbb {C} _ {2}} \ oint \ limits _ {\ mathbb {C} _ {1}} {\ frac {\ mathrm {d} \ mathbf {r} _ {2} (\ mathbf {r} _ {1} - \ mathbf {r} _ {2}, \ mathrm {d} \ mathbf {r} _ {1})} {| \ mathbf {r} _ {1 } - \ mathbf {r} _ {2} | ^ {3}}} = \ left [{\ begin {aligned} & \ mathbf {r} = \ mathbf {r} _ {1} - \ mathbf {r} _ {2} \\ & C_ {1} \ rightarrow C_ {1} '\\\ end {aligned}} \ right] = \ oint \ limits _ {\ mathbb {C} _ {2}} \ mathrm {d} \ mathbf {r} _ {2} \ oint \ limits _ {\ mathbb {C} _ {1} '} {\ frac {(\ mathbf {r}, \ mathrm {d} \ mathbf {r})} { | \ mathbf {r} | ^ {3}}} = \ oint \ limits _ {\ mathbb {C} _ {2}} \ mathrm {d} \ mathbf {r} _ {2} \ oint \ limits _ { \ mathbb {C} _ {1} '} (\ mathrm {grad} {\ frac {1} {| \ mathbf {r} |}}, \ mathrm {d} \ mathbf {r}) = 0.}  

Thus we get the form of Ampere's law given by Maxwell:

F12=μ0IoneI2fourπ∮C2⁡∮Cone⁡[dr2,[drone,r2-rone]]|rone-r2|3.{\ displaystyle \ mathbf {F} _ {12} = {\ mu _ {0} I_ {1} I_ {2} \ over 4 \ pi} \ oint \ limits _ {\ mathbb {C} _ {2}} \ oint \ limits _ {\ mathbb {C} _ {1}} {\ frac {[\ mathrm {d} \ mathbf {r} _ {2}, [\ mathrm {d} \ mathbf {r} _ {1 }, \ mathbf {r} _ {2} - \ mathbf {r} _ {1}]]} {| \ mathbf {r} _ {1} - \ mathbf {r} _ {2} | ^ {3} }}.}  

It should be noted that although the Ampere power is always the same for differentk {\ displaystyle k}   , the moment of forces, however, may differ. For example, when two infinite wires intersect at right angles interact, the interaction force will be zero. If we calculate the moment of forces acting on each of the wires, according to the Grassman formula, none of them will be equal to zero (although in total they will be equal to zero). If we calculate the moment of forces according to the original Ampere law, each of them will be equal to zero.

You may notice that the original Ampere law can be used to calculate the interaction force of non-closed currents, as a rule, non-constant, since Newton's third law is never violated. In the case of Grassmann's law, one has to introduce an additional physical entity — a magnetic field to compensate for the non-observance of Newton's third law.

Ampere's law as a relativistic effect

Electric current in the conductor is the movement of charges relative to other charges. This movement leads to the SRT effects, which in classical physics are explained by a separate physical entity - magnetism. In SRT, these effects do not require the introduction of magnetism, and, as a first approximation, it suffices to consider the Coulomb interactions. To describe the Ampere law in the framework of SRT, a metallic conductor describes a straight line with a certain linear density of positive charges and a straight line with mobile charges. The charge is invariant , so the Lorentz effect of reducing the length creates a difference between the density of positive and negative charges in the initially neutral metal wire. Hence the emergence of the force of attraction or repulsion between two conductors with current. [5] [6]

Notes

  1. ↑ GOST 8.417-2002. State system for ensuring uniformity of measurements. Units of quantities (Unsolved) (inaccessible link) . The appeal date is November 7, 2012. Archived November 10, 2012.
  2. ↑ Etienne Klein, Marc Lachieze-Rey. The Quest for Unity: The Adventure of Physics. - New York: Oxford University Press, 1999. - p. 43-44. - ISBN 0-19-512085-X .
  3. ↑ Roger G Newton. From Clockwork to Crapshoot: A History of Physics. - The Belknap Press of Harward University Press, 2007. - P. 137. - ISBN 978-0-674-03487-7 .
  4. ↑ Maxwell, James Clerk. Treatise on Electricity and Magnetism. - Oxford, 1904. - p. 173.
  5. ↑ Lecture 1. Magnetostatics. Relativistic nature of the magnetic field. // St. Petersburg Polytechnic University of Peter the Great (SPbPU)
  6. ↑ Saveliev I.V. Course of General Physics: Textbook. allowance. In 3 tons. T. 2. Electricity and magnetism. Waves. Optics. - 3rd ed., Corr. - M .: Science. Ch. ed. Phys.-Mat. lit., 1988. - 496 p. P.120

See also

  • Lorenz force
  • Ampere's Law on Circulation
The source is https://ru.wikipedia.org/w/index.php?title=Ampere's Law_oldid = 100010858


More articles:

  • GAZ-52
  • Ready for labor and defense of the USSR
  • Street Academic Nesmeyanova
  • Otkaznik (emigration)
  • Mistletoe
  • Order-order (Russia)
  • Hunchun
  • F-test
  • Windows CE 6.0
  • Tavern

All articles

Clever Geek | 2019