Clever Geek Handbook
📜 ⬆️ ⬇️

Suspension viscosity

The relative viscosity of the suspensionη {\ displaystyle \ eta} \ eta (the ratio of the viscosity of the suspension to the viscosity of the dispersion medium ) depends on many factors: temperature T, degree of dispersion , volume fractionφ {\ displaystyle \ varphi} \ varphi dispersed phase, shear rate (velocity gradient)γ˙ {\ displaystyle {\ dot {\ gamma}}} {\ displaystyle {\ dot {\ gamma}}} and shear stress time t (in the case of relaxation effects - thixotropy or rheopexy ).

Krieger Formula

The dependence of the relative viscosity of the suspensionη {\ displaystyle \ eta} \eta on the concentration of the dispersed phaseφ {\ displaystyle \ varphi} \varphi at a constant shear rate is described by the Krieger formula [1] :

(one)η=(one-φφ0)-φ0[η]{\ displaystyle (1) \ qquad \ eta = \ left (1 - {\ frac {\ varphi} {\ varphi _ {0}}} \ right) ^ {- \ varphi _ {0} [\ eta]}} {\displaystyle (1)\qquad \eta =\left(1-{\frac {\varphi }{\varphi _{0}}}\right)^{-\varphi _{0}[\eta ]}}

Where[η] {\ displaystyle [\ eta]} {\displaystyle [\eta ]} - intrinsic viscosityφ0 {\ displaystyle \ varphi _ {0}} \varphi _{0} - the maximum amount of solid phase that can be introduced into the suspension; while the viscosity of the suspension tends to infinity.

This formula is derived from the following premises [2]

A) When the volume fraction of the solid phase tends to zero, the relative viscosity of the suspension tends to unity, and its derivative with respect to the volume fraction of the dispersed phase tends to the characteristic viscosity:

(2){η(0)=onedη(0)dφ=[η]{\ displaystyle (2) \ qquad {\ begin {cases} \ eta (0) = 1 \\ {d \ eta (0) \ over d \ varphi} = [\ eta] \ end {cases}}} {\displaystyle (2)\qquad {\begin{cases}\eta (0)=1\\{d\eta (0) \over d\varphi }=[\eta ]\end{cases}}}

B)η(φ) {\ displaystyle \ eta (\ varphi)} {\displaystyle \eta (\varphi )} must satisfy the Krieger functional equation [1]:

(3)η(φone+φ2)=η(φone)η(φ2one-φone/φ0){\ displaystyle (3) \ qquad \ eta {\ bigl (} \ varphi _ {1} + \ varphi _ {2} {\ bigr)} = \ eta (\ varphi _ {1}) \ eta \ left ({ \ frac {\ varphi _ {2}} {1- \ varphi _ {1} / \ varphi _ {0}}} right)} {\displaystyle (3)\qquad \eta {\bigl (}\varphi _{1}+\varphi _{2}{\bigr )}=\eta (\varphi _{1})\eta \left({\frac {\varphi _{2}}{1-\varphi _{1}/\varphi _{0}}}\right)}

Whereφone {\ displaystyle \ varphi _ {1}} \varphi _{1} andφ2 {\ displaystyle \ varphi _ {2}} \varphi _{2} - volume fractions of the same component, introduced in parts.

Replacing in equation (3)φone {\ displaystyle \ varphi _ {1}} \varphi _{1} onφ {\ displaystyle \ varphi} \varphi , butφ2 {\ displaystyle \ varphi _ {2}} \varphi _{2} to differentialdφ {\ displaystyle d \ varphi} d\varphi , we obtain a differential equation whose solution, taking into account the initial conditions (2), is the Krieger formula (1).

A generalization of the Krieger formula to the case of a multicomponent suspension is [3] :

(four)η=(one-∑i=onenφiφ0,i)-φ¯0[η¯]{\ displaystyle (4) \ qquad \ eta = \ left (1- \ sum _ {i = 1} ^ {n} {\ frac {\ varphi _ {i}} {\ varphi _ {0, i}}} \ right) ^ {- {\ overline {\ varphi}} _ {0} [{\ overline {\ eta}}]}} {\displaystyle (4)\qquad \eta =\left(1-\sum _{i=1}^{n}{\frac {\varphi _{i}}{\varphi _{0,i}}}\right)^{-{\overline {\varphi }}_{0}[{\overline {\eta }}]}}

Where[η¯] {\ displaystyle [{\ overline {\ eta}}]}   - volumetric characteristic viscosity[η¯]=∑[ηi]φiφ {\ displaystyle [{\ overline {\ eta}}] = {\ frac {\ sum [\ eta _ {i}] \ varphi _ {i}} {\ varphi}}}   ,

φ0¯{\ displaystyle {\ overline {\ varphi _ {0}}}}   - average harmonic concentration limitφ0¯=φ∑φi/φ0,i {\ displaystyle {\ overline {\ varphi _ {0}}} = {\ frac {\ varphi} {\ sum \ varphi _ {i} / \ varphi _ {0, i}}}}   ,

φ{\ displaystyle \ varphi}   - total volume fraction of solid phaseφ=∑φi {\ displaystyle \ varphi = \ sum \ varphi _ {i}}   .

Types of flow curves

 
Fig. 1. Types of Flow Curves

Flow Curves — Shear Stress Plotsτ {\ displaystyle \ tau}   on shear rateγ˙ {\ displaystyle {\ dot {\ gamma}}}   .

In fig. 1 schematically shows 4 different types of flow curves:

(1) - Newtonian fluid ,

(2) - Bingham plastic ,

(3) - dilatant suspension,

(4) a structurally viscous (pseudoplastic) suspension,

τ0{\ displaystyle \ tau _ {0}}   - yield strength .

Literature

  1. Krieger IM Flow Properties of Latex and Concentrated Solutions. In the book. "Surfaces and Coatings Related to Paaper and Wood." A Symposium, State University College of Forestry at Syracuse University, Syracuse University Press. 1967 P. 25-51.
  2. Barnes HA, Hutton JF, Walters K. An Introduction to Rheology. Rheology series 3, Elsevier. 1988. P. 119-125.
  3. Levinsky A.I. The viscosity of suspensions: the Krieger – Dougherty formula and the Farris effect "// Proceedings of universities. Chemistry and Chemical Technology, 2005. Vol. 48 No. 12.

Notes

  1. ↑ Krieger IM In the book. "Surfaces and Coatings Related to Paper and Wood" // Flow Properties of Latex and Concentrated Solutions .. - A Symposium, State University College of Forestry at Syracuse University: Syracuse University Press, 1967. - P. 25-51.
  2. ↑ Krieger IM In the book. "Surfaces and Coatings Related to Paper and Wood" // Flow Properties of Latex and Concentrated Solutions .. - A Symposium, State University College of Forestry at Syracuse University: Syracuse University Press, 1967. - P. 25-51.
  3. ↑ Levinsky A.I. The viscosity of suspensions: the Krieger – Dougherty formula and the Farris effect // News of universities. Chemistry and chemical technology. - 2005. - T. 48 , No. 12 . - S. 22-25 .
Source - https://ru.wikipedia.org/w/index.php?title= Suspension viscosity &oldid = 102024440


More articles:

  • Inhibitor
  • Ali Abdul Aal Sayed Ahmed
  • 2nd Tverskoy-Yamskoy Lane
  • Aggol (village)
  • Halle Ashton
  • United Congress of Russian Emigrants in America
  • Cet-Nord
  • Dubrovka (Shklovsky District)
  • Renewable Energy Sculpture
  • Fedorov, Mikhail Albertovich

All articles

Clever Geek | 2019