Clever Geek Handbook
📜 ⬆️ ⬇️

Convex analysis

3-dimensional convex polyhedron. Convex analysis includes not only the study of convex subsets of Euclidean spaces, but also the study of convex functions on abstract spaces.

Convex analysis is a branch of mathematics devoted to the study of the properties of convex functions and convex sets , often having applications in convex programming , a subdomain of optimization theory .

Content

Convex sets

A convex set is a setC⊆X {\ displaystyle C \ subseteq X}   for some vector space X such that for anyx,y∈C {\ displaystyle x, y \ in C}   andλ∈[0,one] {\ displaystyle \ lambda \ in [0,1]}   [one]

λx+(one-λ)y∈C{\ displaystyle \ lambda x + (1- \ lambda) y \ in C}   .

Convex function

A convex function is any extended real-valued functionf:X→R∪{± ∞ } {\ displaystyle f: X \ to \ mathbb {R} \ cup \ {\ pm \ infty \}}   which satisfies Jensen 's inequality , that is, for anyx,y∈X {\ displaystyle x, y \ in X}   and anyλ∈[0,one] {\ displaystyle \ lambda \ in [0,1]}  

f(λx+(one-λ)y)⩽λf(x)+(one-λ)f(y){\ displaystyle f (\ lambda x + (1- \ lambda) y) \ leqslant \ lambda f (x) + (1- \ lambda) f (y)}   [1] .

Equivalently, a convex function is any (extended) real-valued function such that its epigraph

{(x,r)∈X×R:f(x)⩽r}{\ displaystyle \ left \ {(x, r) \ in X \ times \ mathbf {R}: f (x) \ leqslant r \ right \}}  

is a convex set [1] .

Convex Mate

Convex conjugation of an extended real-valued (not necessarily convex) functionf:X→R∪{±∞} {\ displaystyle f: X \ to \ mathbb {R} \ cup \ {\ pm \ infty \}}   Is a functionf∗:X∗→R∪{±∞} {\ displaystyle f ^ {*}: X ^ {*} \ to \ mathbb {R} \ cup \ {\ pm \ infty \}}   , where X * is the dual space of the space X [2] such that

f∗(x∗)=supx∈X{⟨x∗,x⟩-f(x)}.{\ displaystyle f ^ {*} (x ^ {*}) = \ sup _ {x \ in X} \ left \ {\ langle x ^ {*}, x \ rangle -f (x) \ right \}. }  

Double pairing

Dual pairing functionf:X→R∪{±∞} {\ displaystyle f: X \ to \ mathbb {R} \ cup \ {\ pm \ infty \}}   Is a pairing pairing, which is usually written asf∗∗:X→R∪{±∞} {\ displaystyle f ^ {**}: X \ to \ mathbb {R} \ cup \ {\ pm \ infty \}}   . Double conjugation is useful when you need to show that strong or is fulfilled (using ).

For anyonex∈X {\ displaystyle x \ in X}   inequalityf∗∗(x)⩽f(x) {\ displaystyle f ^ {**} (x) \ leqslant f (x)}   follows from Fenchel's inequality . For f = f ** if and only if f is convex and lower semicontinuous by the Fenchel – Moreau theorem [2] [3] .

Convex minimization

The (direct) convex programming problem is a problem of the form

infx∈Mf(x){\ displaystyle \ inf _ {x \ in M} f (x)}  

such thatf:X→R∪{±∞} {\ displaystyle f: X \ to \ mathbb {R} \ cup \ {\ pm \ infty \}}   is a convex function, andM⊆X {\ displaystyle M \ subseteq X}   is a convex set.

The dual task

The duality principle in optimization states that optimization problems can be considered from two points of view, as a direct problem or a dual task .

in the general case, given a [4] of separable locally convex spaces(X,X∗) {\ displaystyle \ left (X, X ^ {*} \ right)}   and functionf:X→R∪{+∞} {\ displaystyle f: X \ to \ mathbb {R} \ cup \ {+ \ infty \}}   , we can define a direct problem as finding suchx^ {\ displaystyle {\ hat {x}}}   , whatf(x^)=infx∈Xf(x). {\ displaystyle f ({\ hat {x}}) = \ inf _ {x \ in X} f (x). \,}   In other words,f(x^) {\ displaystyle f ({\ hat {x}})}   Is the infimum (exact lower bound) of the functionf {\ displaystyle f}   .

If there are restrictions, they can be built into the functionf {\ displaystyle f}   if putf~=f+Iconstraints {\ displaystyle {\ tilde {f}} = f + I _ {\ mathrm {constraints}}}   whereI {\ displaystyle I}   - . Let nowF:X×Y→R∪{+∞} {\ displaystyle F: X \ times Y \ to \ mathbb {R} \ cup \ {+ \ infty \}}   (for another dual pair(Y,Y∗) {\ displaystyle \ left (Y, Y ^ {*} \ right)}   ) is a such thatF(x,0)=f~(x) {\ displaystyle F (x, 0) = {\ tilde {f}} (x)}   [5] .

The dual problem for this perturbation function with respect to the selected problem is defined as

supy∗∈Y∗-F∗(0,y∗){\ displaystyle \ sup _ {y ^ {*} \ in Y ^ {*}} - F ^ {*} (0, y ^ {*})}  

where F * is the convex conjugation in both variables of the function F.

The duality gap is the difference between the right and left sides of the inequality

supy∗∈Y∗-F∗(0,y∗)⩽infx∈XF(x,0),{\ displaystyle \ sup _ {y ^ {*} \ in Y ^ {*}} - F ^ {*} (0, y ^ {*}) \ leqslant \ inf _ {x \ in X} F (x, 0), \,}  

WhereF∗ {\ displaystyle F ^ {*}}   Is the convex conjugation of both variables, andsup {\ displaystyle \ sup}   means supremum (exact upper bound) [6] [7] [5] [6] .

supy∗∈Y∗-F∗(0,y∗)⩽infx∈XF(x,0).{\ displaystyle \ sup _ {y ^ {*} \ in Y ^ {*}} - F ^ {*} (0, y ^ {*}) \ leqslant \ inf _ {x \ in X} F (x, 0).}  

This principle is the same as . If both sides are equal, they say that the problem satisfies the conditions of strong duality .

There are many conditions for strong duality, such as:

  • F = F ** , where F is the for the direct and dual problems, and F ** is the double conjugation of the function F ;
  • a direct task is a linear programming task ;
  • Slater condition for convex programming problems [8] [9] .

Lagrange Duality

For a convex minimization problem with inequality constraints

minxf(x){\ displaystyle \ min _ {x} f (x)}   under conditionsgi(x)⩽0 {\ displaystyle g_ {i} (x) \ leqslant 0}   for i = 1, ..., m .

the dual task of Lagrange will be

supuinfxL(x,u){\ displaystyle \ sup _ {u} \ inf _ {x} L (x, u)}   under conditionsui(x)⩾0 {\ displaystyle u_ {i} (x) \ geqslant 0}   for i = 1, ..., m ,

where the objective function L ( x , u ) is the dual Lagrange function defined as follows:

L(x,u)=f(x)+∑j=onemujgj(x){\ displaystyle L (x, u) = f (x) + \ sum _ {j = 1} ^ {m} u_ {j} g_ {j} (x)}  

Notes

  1. ↑ 1 2 3 Rockafellar, 1997 .
  2. ↑ 1 2 Zălinescu, 2002 , p. 75–79.
  3. ↑ Borwein, Lewis, 2006 , p. 76–77.
  4. ↑ The dual pair is the three(X,X∗,⟨,⟩) {\ displaystyle \ left (X, X ^ {*}, \ langle, \ rangle \ right)}   whereX {\ displaystyle X}   Is the vector space above the fieldF {\ displaystyle F}   ,X∗ {\ displaystyle X ^ {*}}   - the set of all linear mappingsϕ:X→F {\ displaystyle \ phi \ colon X \ to F}   , and the third element is a bilinear formX∗×X→F:(ϕ,x)↦ϕ(x) {\ displaystyle X ^ {*} \ times X \ to F \ colon (\ phi, x) \ mapsto \ phi (x)}   .
  5. ↑ 1 2 Boţ, Wanka, Grad, 2009 .
  6. ↑ 1 2 Csetnek, 2010 .
  7. ↑ Zălinescu, 2002 , p. 106–113.
  8. ↑ Borwein, Lewis, 2006 .
  9. ↑ Boyd, Vandenberghe, 2004 .

Literature

  • Jonathan Borwein, Adrian Lewis. Convex Analysis and Nonlinear Optimization: Theory and Examples. - 2. - Springer, 2006. - ISBN 978-0-387-29570-1 .
  • Stephen Boyd, Lieven Vandenberghe. Convex Optimization . - Cambridge University Press, 2004. - ISBN 978-0-521-83378-3 .
  • R. Tyrrell Rockafellar. Convex Analysis. - Princeton, NJ: Princeton University Press, 1997. - ISBN 978-0-691-01586-6 .
  • Radu Ioan Boţ, Gert Wanka, Sorin-Mihai Grad. Duality in Vector Optimization. - Springer, 2009 .-- ISBN 978-3-642-02885-4 .
  • Constantin Zălinescu. Convex analysis in general vector spaces. - River Edge, NJ: World Scientific Publishing Co., Inc., 2002. - S. 106–113. - ISBN 981-238-067-1 .
  • Ernö Robert Csetnek. Overcoming the failure of the classical generalized interior-point regularity conditions in convex optimization. Applications of the duality theory to enlargements of maximal monotone operators. - Logos Verlag Berlin GmbH, 2010 .-- ISBN 978-3-8325-2503-3 .
  • Jonathan Borwein, Adrian Lewis. Convex Analysis and Nonlinear Optimization: Theory and Examples. - 2. - Springer, 2006. - ISBN 978-0-387-29570-1 .
  • Hiriart-Urruty J.-B., Lemaréchal C. Fundamentals of convex analysis. - Berlin: Springer-Verlag, 2001 .-- ISBN 978-3-540-42205-1 .
  • Ivan Singer. Abstract convex analysis. - New York: John Wiley & Sons, Inc., 1997 .-- C. xxii + 491. - (Canadian Mathematical Society series of monographs and advanced texts). - ISBN 0-471-16015-6 .
  • Stoer J., Witzgall C. Convexity and optimization in finite dimensions. - Berlin: Springer, 1970. - T. 1. - ISBN 978-0-387-04835-2 .
  • Kusraev AG, Kutateladze SS Subdifferentials: Theory and Applications. - Dordrecht: Kluwer Academic Publishers, 1995 .-- ISBN 978-94-011-0265-0 .
  • Kusraev A.G., Kutateladze S.S. Subdifferentials. Theory and applications. Part 2 .. - 2nd, revised .. - Novosibirsk: Publishing House of the Institute of Mathematics, 2003. - ISBN 5–86134–116–8.
Source - https://ru.wikipedia.org/w/index.php?title=Convex analysis&oldid = 101613574


More articles:

  • UEFA Cup 2006/2007. Group Stage
  • South Dubrovnoe
  • Theory of Ridley - Watkins - Hillsum
  • Grand Morin
  • ISO 31-11
  • Pisarev, Evgeny Borisovich
  • Sipandi Samarkandi
  • Akantodory
  • Pogostemon
  • Swanson, Dwayne

All articles

Clever Geek | 2019