Clever Geek Handbook
📜 ⬆️ ⬇️

Tolerance interval

Tolerant interval is a term used in mathematical statistics when determining on the basis of sample data an interval that at a given confidence level contains a given probability measure of an unknown distribution function.

The concepts of tolerance and confidence intervals are close to each other.

The tolerance interval is an interval in the sample space of observed random variables. It is determined by sufficient statistics based on the requirement that for a given confidence level it contains a probability measure of a statistical distribution that is not less than a given level. [one]

The confidence interval is determined for a certain parameter of the distribution function and is an interval in the parametric space. It is determined by sufficient statistics based on the requirement that the probability that it contains the true value of the unknown parameter is not less than the confidence level. [one]

Content

Definition

Let the random variableY {\ displaystyle Y}   does not depend onX {\ displaystyle X}   and has a distribution functionFθ {\ displaystyle F _ {\ theta}}   . Tolerant spacing(β,γ) {\ displaystyle (\ beta, \ gamma)}   with measureβ {\ displaystyle \ beta}   and level of trustγ {\ displaystyle \ gamma}   called interval[Lone,β,γ(X),L2,β,γ(X)] {\ displaystyle \ left [L_ {1, \ beta, \ gamma} (X), L_ {2, \ beta, \ gamma} (X) \ right]}   for which the condition is metPθ{Pθ{Lone,β,γ(X)⩽Y⩽L2,β,γ(X)|X}⩾β}⩾γ {\ displaystyle P _ {\ theta} \ left \ {P _ {\ theta} \ left \ {L_ {1, \ beta, \ gamma} (X) \ leqslant Y \ leqslant L_ {2, \ beta, \ gamma} ( X) | X \ right \} \ geqslant \ beta \ right \} \ geqslant \ gamma}   for all parameter valuesθ {\ displaystyle \ theta}   . [2]

Explanation

Let beξ {\ displaystyle \ xi}   - quantile distribution functionFθ {\ displaystyle F _ {\ theta}}   denoted byF-one(ξ;θ) {\ displaystyle F ^ {- 1} (\ xi; \ theta)}   . By definition, we havePθ{F-one(ξone;θ)⩽X⩽F-one(ξ2;θ)}⩾ξ2-ξone {\ displaystyle P _ {\ theta} \ left \ {F ^ {- 1} (\ xi _ {1}; \ theta) \ leqslant X \ leqslant F ^ {- 1} (\ xi _ {2}; \ theta ) \ right \} \ geqslant \ xi _ {2} - \ xi _ {1}}   . Interval measuresβ {\ displaystyle \ beta}   distribution functionsFθ {\ displaystyle F _ {\ theta}}   called interval[F-one(ξone;θ),F-one(ξ2;θ)] {\ displaystyle \ left [F ^ {- 1} (\ xi _ {1}; \ theta), F ^ {- 1} (\ xi _ {2}; \ theta) \ right]}   , if aβ=ξ2-ξone {\ displaystyle \ beta = \ xi _ {2} - \ xi _ {1}}   . [3]

See also

  • Confidence interval

Notes

  1. ↑ 1 2 Zacks, 1975 , p. 42
  2. ↑ Zacks, 1975 , p. 658.
  3. ↑ Zacks, 1975 , p. 657.

Literature

  • Sh. Zaks. The theory of statistical conclusions. - M .: Mir, 1975. - 776 p.
Source - https://ru.wikipedia.org/w/index.php?title=Tolerant_interval&oldid=100502507


More articles:

  • Kartashovka (Oryol Region)
  • Butlers (company)
  • I Was a Teenage Anarchist
  • Telegin, Vladimir Pavlovich
  • Rose (film, 1986)
  • The match for the title of world champion in chess 1910 (Lasker - Schlechter)
  • Crime in Myanmar
  • Chumachenko, Yury Nikolaevich
  • Lyrebirds
  • Heidel, Christian

All articles

Clever Geek | 2019