Clever Geek Handbook
📜 ⬆️ ⬇️

Moreau's Theorem

Moreau's theorem is a result in convex analysis . It shows that sufficiently good convex functionals on Hilbert spaces are differentiable and the derivative is well approximated by the so-called Yosida approximation , which is defined in terms of the resolvent .

Statement of the theorem

Let beφ:H→R∪{+∞} {\ displaystyle \ varphi: H \ to \ mathbb {R} \ cup \ {+ \ infty \}}   is a proper convex lower semicontinuous functional in the Hilbert space H with values in the extended number line . Let A mean∂φ {\ displaystyle \ partial \ varphi}   subdifferentialφ {\ displaystyle \ varphi}   . Forα>0 {\ displaystyle \ alpha> 0}   let beJα {\ displaystyle J _ {\ alpha}}   means resolvent:

Jα=(id+αA)-one;{\ displaystyle J _ {\ alpha} = (\ mathrm {id} + \ alpha A) ^ {- 1};}  

butAα {\ displaystyle A _ {\ alpha}}   means the approximation of Yosida for A :

Aα=oneα(id-Jα).{\ displaystyle A _ {\ alpha} = {\ frac {1} {\ alpha}} (\ mathrm {id} -J _ {\ alpha}).}  

For eachα>0 {\ displaystyle \ alpha> 0}   andx∈H {\ displaystyle x \ in H}   put

φα(x)=infy∈Hone2α‖y-x‖2+φ(y).{\ displaystyle \ varphi _ {\ alpha} (x) = \ inf _ {y \ in H} {\ frac {1} {2 \ alpha}} \ | yx \ | ^ {2} + \ varphi (y) .}  

Then

φα(x)=α2‖Aαx‖2+φ(Jα(x)){\ displaystyle \ varphi _ {\ alpha} (x) = {\ frac {\ alpha} {2}} \ | A _ {\ alpha} x \ | ^ {2} + \ varphi (J _ {\ alpha} (x ))}   ,

φα{\ displaystyle \ varphi _ {\ alpha}}   convex and Frechet differentiable with derivativedφ+α=Aα {\ displaystyle d \ varphi + \ alpha = A _ {\ alpha}}   . Also for anyx∈H {\ displaystyle x \ in H}   (dotwise)φα(x) {\ displaystyle \ varphi _ {\ alpha} (x)}   converges toφ(x) {\ displaystyle \ varphi (x)}   atα→0 {\ displaystyle \ alpha \ to 0}   .

Literature

  • Ralph E. Showalter. Monotone operators in Banach space and nonlinear partial differential equations. - Providence, RI: American Mathematical Society, 1997. - S. 162–163. - (Mathematical Surveys and Monographs 49). - ISBN 0-8218-0500-2 . MR : 1422252 (Proposition IV.1.8)
Source - https://ru.wikipedia.org/w/index.php?title=Moro Moro&oldid = 101655927


More articles:

  • Elchingen Monastery
  • Winter European Youth Olympic Festival 2019
  • RGS4
  • Isuapan (Akayukan)
  • Coronal Seismology
  • Muller, Otto Frederick
  • Admont Abbey
  • Muller, David Henry
  • 1816 in the history of railway transport
  • Grönlo, Anneke

All articles

Clever Geek | 2019