Clever Geek Handbook
πŸ“œ ⬆️ ⬇️

Fennel Theorem - Moreau

A function that is not lower semicontinuous . By the Fenchel-Moreau theorem, this function is not equal to its second conjugate.

The Fenchel – Moreau theorem is a necessary and sufficient condition for a real-valued function to be equal to its double convex conjugation . Moreover, for any function, it is true thatfβˆ—βˆ—β©½f {\ displaystyle f ^ {**} \ leqslant f} {\ displaystyle f ^ {**} \ leqslant f} [1] [2] .

The statement can be considered as a generalization [1] . It is used in duality theory to prove strong duality (via ).

The theorem was proved for a finite-dimensional case by Werner Fenchel in 1949 , and for an infinite-dimensional case, by Jean-Jacques Moreau in 1960 [3] .

Statement of the theorem

Let be(X,Ο„) {\ displaystyle (X, \ tau)} {\displaystyle (X,\tau )} is a Hausdorff locally convex space . For any function with values ​​on the extended number linef:Xβ†’Rβˆͺ{±∞} {\ displaystyle f: X \ to \ mathbb {R} \ cup \ {\ pm \ infty \}} {\displaystyle f:X\to \mathbb {R} \cup \{\pm \infty \}} follows thatf=fβˆ—βˆ— {\ displaystyle f = f ^ {**}} {\displaystyle f=f^{**}} wherefβˆ— {\ displaystyle f ^ {*}} {\displaystyle f^{*}} - convex conjugation tof {\ displaystyle f} f , if and only if one of the following conditions is true:

  1. f{\ displaystyle f} f is lower semicontinuous and convex function ,
  2. f≑+∞{\ displaystyle f \ equiv + \ infty} {\displaystyle f\equiv +\infty } , or
  3. f≑-∞{\ displaystyle f \ equiv - \ infty} {\displaystyle f\equiv -\infty } [1] [4] [5] .

In a geometric formulation, the theorem states that the necessary and sufficient condition for a function epigraph to be the intersection of epigraphs of affine functions is the convexity and closeness of this function [3] .

Notes

  1. ↑ 1 2 3 Borwein, Lewis, 2006 , p. 76–77.
  2. ↑ ZΔƒlinescu, 2002 , p. 75–79.
  3. ↑ 1 2 Tikhomirov V. Convexity geometry // Quantum. - 2003. - No. 4.
  4. ↑ Lai, Lin, 1988 , p. 85–90.
  5. ↑ Koshi, Komuro, 1983 , p. 178–181.

Literature

  • Ioffe A. D., Tikhomirov V. M. Duality of convex functions and extremal problems . - UMN. - 1968. - T. 23, No. 6 (144). - S. 51–116.
  • Strekalovsky A.S. Introduction to convex analysis . - Irkutsk State University, 2009.
  • Jonathan Borwein, Adrian Lewis. Convex Analysis and Nonlinear Optimization: Theory and Examples. - 2. - Springer, 2006. - ISBN 9780387295701 .
  • Constantin ZΔƒlinescu. Convex analysis in general vector spaces. - River Edge, NJ: World Scientific Publishing Co., Inc., 2002. - ISBN 981-238-067-1 .
  • Hang-Chin Lai, Lai-Jui Lin. The Fenchel-Moreau Theorem for Set Functions // Proceedings of the American Mathematical Society. - American Mathematical Society, 1988. - May (vol. 103). - DOI : 10.2307 / 2047532 .
  • Shozo Koshi, Naoto Komuro. A generalization of the Fenchel – Moreau theorem // Proc. Japan Acad. Ser. A math. Sci. . - 1983 .-- T. 59 , no. 5 .
Source - https://ru.wikipedia.org/w/index.php?title=Fenchel's theorem_ β€” _Moro &oldid = 99414822


More articles:

  • Gaviller, Sylvia
  • Akylbay, Serik Baiseituli
  • Ramensky, Alexey Pakhomovich
  • Diego Corrales - Jose Luis Castillo
  • Croatian Sign Language
  • Bosov, Dmitry Borisovich
  • Lazauskas, Juozas Victor
  • Shakh-Aziz, Smbat Simonovich
  • Del Valle Allende, Jaime
  • Dzholdasbaeva, Nurlygaim Chaldanovna

All articles

Clever Geek | 2019