Clever Geek Handbook
📜 ⬆️ ⬇️

Tangent bundle

Informally, the tangent bundle of a manifold (in this case the circle) is obtained by considering all tangent spaces (above) and combining them smoothly without intersections (below)

Tangent bundle of a smooth manifoldM {\ displaystyle M} M - there is a vector bundle overM {\ displaystyle M} M whose layer is at a pointx∈M {\ displaystyle x \ in M} x \ in M is tangent spaceTxM {\ displaystyle T_ {x} M} T_ {x} M at the pointx {\ displaystyle x} x . Tangent bundle is usually denoted byTM {\ displaystyle TM} TM .

Element of total spaceTM {\ displaystyle TM} TM Is a couple(x,v) {\ displaystyle (x, \; v)} (x, \; v) wherex∈M {\ displaystyle x \ in M} x \ in M andv∈TxM {\ displaystyle v \ in T_ {x} M} v \ in T_ {x} M . The tangent bundle has a natural topology (not the topology of a disjunctive union) and a smooth structure that turns it into a manifold. DimensionTM {\ displaystyle TM} TM equal to twice the dimensionM {\ displaystyle M} M .

Topology and Smooth Structure

If aM {\ displaystyle M} M -n {\ displaystyle n} n -dimensional variety, then it has a map atlas(Uα,φα) {\ displaystyle (U _ {\ alpha}, \; \ varphi _ {\ alpha})} (U_{\alpha },\;\varphi _{\alpha }) whereUα {\ displaystyle U _ {\ alpha}} U_{\alpha } - open subsetM {\ displaystyle M} M and

φα:Uα→Rn{\ displaystyle \ varphi _ {\ alpha} \ colon U _ {\ alpha} \ to \ mathbb {R} ^ {n}} \varphi _{\alpha }\colon U_{\alpha }\to \mathbb{R} ^{n}

- homeomorphism .

These local coordinates onU {\ displaystyle U} U generate an isomorphism betweenTxM {\ displaystyle T_ {x} M} T_{x}M andRn {\ displaystyle \ mathbb {R} ^ {n}} \mathbb {R} ^{n} for anyonex∈U {\ displaystyle x \ in U} x\in U . You can define a mapping

φ~α:π-one(Uα)→R2n{\ displaystyle {\ tilde {\ varphi}} _ {\ alpha} \ colon \ pi ^ {- 1} (U _ {\ alpha}) \ to \ mathbb {R} ^ {2n}} {\tilde  \varphi }_{\alpha }\colon \pi ^{{-1}}(U_{\alpha })\to \mathbb{R} ^{{2n}}

as

φ~α(x,vi∂i)=(φα(x),vone,...,vn).{\ displaystyle {\ tilde {\ varphi}} _ {\ alpha} (x, \; v ^ {i} \ partial _ {i}) = (\ varphi _ {\ alpha} (x), \; v ^ {1}, \; \ ldots, \; v ^ {n}).} {\tilde  \varphi }_{\alpha }(x,\;v^{i}\partial _{i})=(\varphi _{\alpha }(x),\;v^{1},\;\ldots ,\;v^{n}).

These mappings are used to determine the topology and smooth structure onTM {\ displaystyle TM} TM .

SubsetA {\ displaystyle A} A ofTM {\ displaystyle TM} TM open if and only ifφ~α(A∩π-one(Uα)) {\ displaystyle {\ tilde {\ varphi}} _ {\ alpha} (A \ cap \ pi ^ {- 1} (U _ {\ alpha}))} {\tilde  \varphi }_{\alpha }(A\cap \pi ^{{-1}}(U_{\alpha })) - open inR2n {\ displaystyle \ mathbb {R} ^ {2n}} \mathbb{R} ^{{2n}} for anyoneα {\ displaystyle \ alpha} \alpha . These mappings are homeomorphisms of open subsetsTM {\ displaystyle TM} TM andR2n {\ displaystyle \ mathbb {R} ^ {2n}} \mathbb{R} ^{{2n}} therefore they form maps of smooth structure onTM {\ displaystyle TM} TM . Transition Functions at Map Intersectionsπ-one(Uα∩Uβ) {\ displaystyle \ pi ^ {- 1} (U _ {\ alpha} \ cap U _ {\ beta})} \pi ^{{-1}}(U_{\alpha }\cap U_{\beta }) are defined by the Jacobi matrices of the corresponding coordinate transformations; therefore, they are smooth mappings of open subsetsR2n {\ displaystyle \ mathbb {R} ^ {2n}} \mathbb{R} ^{{2n}} .

Tangent bundle is a special case of a more general construction called vector bundle . Tangent bundlen {\ displaystyle n} n -dimensional diversityM {\ displaystyle M} M can be defined as a vector bundle of rankn {\ displaystyle n} n aboveM {\ displaystyle M} M whose transition functions are specified by the Jacobian of the corresponding coordinate transformations.

Examples

  • The simplest example is obtained forRn {\ displaystyle \ mathbb {R} ^ {n}}   . In this case, the tangent bundle is trivial and isomorphic to the projectionR2n→Rn {\ displaystyle \ mathbb {R} ^ {2n} \ to \ mathbb {R} ^ {n}}   .
  • Unit circleSone {\ displaystyle S ^ {1}}   . Its tangent bundle is also trivial and isomorphic.Sone×R {\ displaystyle S ^ {1} \ times \ mathbb {R}}   . Geometrically, it is a cylinder of infinite height (see image above).
  • A simple example of a nontrivial tangent bundle is obtained on the unit sphereS2, {\ displaystyle S ^ {2},}   this tangent bundle is nontrivial due to the hedgehog combing theorem .

Unfortunately, only tangent bundles of the real line can be representedR {\ displaystyle R}   and unit circleSone {\ displaystyle S ^ {1}}   which are both trivial. For two-dimensional manifolds, the tangent bundle is a 4-dimensional manifold, so it is difficult to imagine.

Vector Fields

A vector field is a smooth vector function on a manifoldM {\ displaystyle M}   whose value at each point is a vector tangent toM {\ displaystyle M}   i.e. smooth display

V:M→TM{\ displaystyle V \ colon M \ to TM}  

such that the imagex {\ displaystyle x}   denoted byVx {\ displaystyle V_ {x}}   lies inTxM {\ displaystyle T_ {x} M}   - tangent space at a pointx {\ displaystyle x}   . In the language of locally trivial bundles , such a mapping is called a section . Vector box onM {\ displaystyle M}   Is the section of the tangent bundle overM {\ displaystyle M}   .

The set of all vector fields overM {\ displaystyle M}   is indicatedΓ(TM) {\ displaystyle \ Gamma (TM)}   . Vector fields can be added pointwise:

(V+W)x=Vx+Wx{\ displaystyle (V + W) _ {x} = V_ {x} + W_ {x}}  

and multiply by smooth functions byM {\ displaystyle M}  

(fV)x=f(x)Vx,{\ displaystyle (fV) _ {x} = f (x) V_ {x},}  

getting new vector fields. The set of all vector fieldsΓ(TM) {\ displaystyle \ Gamma (TM)}   obtains the structure of the module over the commutative algebra of smooth functions onM {\ displaystyle M}   (indicated byC∞(M) {\ displaystyle C ^ {\ infty} (M)}   )

If af {\ displaystyle f}   is a smooth function, then the differentiation operation along the vector fieldX {\ displaystyle X}   gives a new smooth functionXf {\ displaystyle Xf}   . This differentiation operator has the following properties:

  • Additivity:X(f+h)=Xf+Xh {\ displaystyle X (f + h) = Xf + Xh}   .
  • Leibniz rule :X(fh)=(Xf)⋅h+f⋅(Xh) {\ displaystyle X (fh) = (Xf) \ cdot h + f \ cdot (Xh)}   .

A vector field on a manifold can also be defined as an operator possessing the above properties.

Local vector field onM {\ displaystyle M}   Is the local section of the tangent bundle. A local vector field is determined only on some open subsetU {\ displaystyle U}   ofM {\ displaystyle M}   at the same time at each point ofU {\ displaystyle U}   defines a vector from the corresponding tangent space. The set of local vector fields onM {\ displaystyle M}   forms a structure called a sheaf of real vector spaces overM {\ displaystyle M}   .

Canonical Vector Field on TM

On each tangent bundleTM {\ displaystyle TM}   canonical vector field can be defined. If a(x,y) {\ displaystyle (x, \; y)}   - local coordinates onTM {\ displaystyle TM}   , then the vector field has the form

V=yi∂∂yi|(x,y).{\ displaystyle V = \ left.y ^ {i} {\ frac {\ partial} {\ partial y ^ {i}}} \ right | _ {(x, \; y)}.}  

V{\ displaystyle V}   is a mappingV:TM→TTM {\ displaystyle V \ colon TM \ to TTM}   .

The existence of such a vector field onTM {\ displaystyle TM}   can be compared with the existence of a canonical 1-form on a cotangent bundle .

See also

  • Display differential
  • Vector field
  • Distribution - subbundle of tangent bundle
  • Vertical layering
  • Horizontal layering
  • Cotangent bundle
  • The Sasaki metric is a natural metric on the tangent bundle of a Riemannian manifold.

Links

  • Arnold V.I. Mathematical methods of classical mechanics. - 5th ed., Stereotyped. - M .: URSS editorial, 2003 .-- 416 p. - 1,500 copies - ISBN 5-354-00341-5 .
  • Vasiliev V.A. Introduction to topology. - M .: FAZIS, 1997 .-- 132 p. - ISBN 5-7036-0036-7 .
  • John M. Lee. Introduction to Smooth Manifolds. - New York: Springer-Verlag, 2003 .-- ISBN 0-387-95495-3 .
  • Jurgen Jost. Riemannian Geometry and Geometric Analysis. - Berlin: Springer-Verlag, 2002 .-- ISBN 3-540-42627-2 .
  • Todd Rowland Tangent Bundle on Wolfram MathWorld .
  • Tangent Bundle on the PlanetMath website .
Source - https://ru.wikipedia.org/w/index.php?title= Tangent bundle&oldid = 95672625


More articles:

  • Leu
  • Zhou Xiuhua
  • Van Hoydonk, Edwig
  • Kupriyanov (farm)
  • National Research University "Moscow Institute of Electronic Technology"
  • Second DH program
  • Allen, Lindsay
  • Han Yacin
  • Bergenstrol, Evgeny Karlovich
  • Pavlovka (Kolpnyansky district)

All articles

Clever Geek | 2019