Below is a list of cities or agglomerations of the world according to GRP . Different studies used a different methodology, which was based mainly on forecasts or rough estimates, especially for cities in countries outside the OECD .
| City / Agglomeration | A country | Region UN JV [1] | Official rating Face value GRP (billion USD) | Brookings Institution [2] GRP estimate 2014 in PPP (billion USD) | PwC [3] GRP estimate 2008 in PPP (billion USD) | McKinsey [4] Rating face value. GRP 2010 (billion USD) | Other ratings Face value GRP (billion USD) |
|---|---|---|---|---|---|---|---|
| Aberdeen | Northern Europe | 11.3 (2008) [5] | |||||
| Abidjan | Africa | 13 | |||||
| Abu Dhabi | West Asia | 119 [6] | 178.3 | 67.1 | |||
| Addis Ababa | Africa | 12 | |||||
| Adelaide | Oceania | 59.1 (2015–16) [7] | 47.4 | ||||
| Akron (Ohio) | North America | 37.300 (2016) [8] | 32.8 | ||||
| Alexandria | Africa | 32.4 | 46 | ||||
| Algeria | Africa | 45 | |||||
| Allentown (PA) | North America | 42,700 (2016) [8] | 37.3 | ||||
| Alma-ata | East Asia | 53.1 | |||||
| Albuquerque | North America | 43,250 (2016) [8] | 39.9 | ||||
| Amsterdam | Western Europe | 154.0 (2015) [9] | 320.6 [Footnote 1] | 47 | |||
| Anapolis | South America | 6.740 (2011) [10] | |||||
| Ankara | West Asia | 104.9 | 58 | 64.9 | |||
| Anshan | East Asia | 67.4 | |||||
| Arnhem - Nijmegen | Western Europe | 27.9 (2016) [9] | 44.4 | ||||
| Atlanta | North America | 385,542 (2017) [8] | 294.4 | 304 | 249.7 | 242.4 [11] | |
| Athens | Southern Europe | 93.7 (2015) [9] | 129.6 | 96 | |||
| Aachen - Liege - Maastricht | Western Europe | 99.7 | |||||
| Ahmedabad | South asia | 59 | 22 | ||||
| Baghdad | West Asia | 24 | |||||
| Basel - Mulhouse | Western Europe | 56.2 | |||||
| Baltimore | North America | 192.178 (2017) [8] | 173.7 | 137 | 118.1 [11] | ||
| Bangalore | South asia | 45.1 | 69 | 28.6 | |||
| Bangkok | Southeast Asia | 306.8 | 119 | 105.0 | |||
| Bandung | Southeast Asia | 20 (2017) [12] | 21 | ||||
| Baotou | East Asia | 40.8 (2017) [13] | 94.1 | ||||
| Barcelona | Southern Europe | 167.8 (2015) [9] | 171.0 | 177 | |||
| Baton rouge | North America | 51.149 (2014) [8] | 53.5 | ||||
| Bakersfield | North America | 35.162 (2016) [8] | 47.9 | ||||
| Belgrade | Southern Europe | 17.4 (2014) [14] | |||||
| Belo Horizonte | South America | 54.996 (2011) [10] | 84.7 | 61 | 78.5 | ||
| Belfast | Northern Europe | 25.5 (2015) [9] | |||||
| Berlin | Western Europe | (2015) [15] | 157.7 | 95 | |||
| Bielefeld - Detmold | Western Europe | 50.5 | |||||
| Bilbao | Southern Europe | 36.9 (2015) [9] | 38.5 | ||||
| Birmingham | Northern Europe | 81.8 (2016) [9] | 121.1 | 90 | |||
| Birmingham (Alabama) | North America | 62,758 (2016) [8] | 54.164 | ||||
| Bogota | South America | 159.9 | 100 | 221.1 (2015) | |||
| Bologna | Southern Europe | 43.4 (2015) [9] | 36.3 | ||||
| Bordeaux | Western Europe | 55.9 (2015) [9] | 40.2 | ||||
| Boston | North America | 438.684 (2017) [8] | 360.1 | 363 | 261.1 [11] | ||
| Brasilia | South America | 164,482 (2011) [10] | 141.9 | 110 | 101.6 | ||
| Braunschweig - Wolfsburg | Western Europe | 45.5 | |||||
| Bremen | Western Europe | 30.4 (2015) [15] | 47.9 | ||||
| Bridgeport | North America | 98,256 (2017) [8] | 70.0 | ||||
| Brisbane | Oceania | 120.6 (2015–16) [16] | 96.6 | ||||
| Bristol | Northern Europe | 51.5 (2016) [9] | 47.7 | ||||
| Brussels | Western Europe | 144.359 (2016) [9] | 254.3 | 83 | |||
| Budapest | Eastern Europe | 58.5 (2016) [9] | 98.0 | 53 | |||
| Bursa (Turkey) | West Asia | 80.1 | |||||
| Buffalo | North America | 58,062 (2016) [8] | 72.7 | ||||
| Bucharest | Eastern Europe | 49.407 (2016) [9] | 72.4 | ||||
| Buenos Aires | South America | 315.9 | 362 | 191.7 | |||
| Valencia | Southern Europe | 60.1 (2015) [9] | 52.7 | ||||
| Vancouver | North America | 109.8 | 95 | ||||
| Warsaw | Eastern Europe | 100 (2017) [17] | 141.1 | 68 | |||
| Washington DC | North America | 529,990 (2017) [8] | 442.2 | 375 | 392.2 | ||
| Vein | Western Europe | 131.9 (2015) [9] | 183.7 [Footnote 2] | 122 | |||
| Venice - Padova | Southern Europe | 62.2 (2015) [9] | 57.3 | ||||
| Vilnius | Northern Europe | 20.0 (2016) [18] | |||||
| Winnipeg | North America | 32.5 | |||||
| Virginia beach | North America | 94.855 (2017) [8] | 92.1 | ||||
| Vitoria | South America | 28.357 (2011) [10] | 35.6 | ||||
| Visakhapatnam | South asia | 43.5 | 6 | ||||
| Worcester | North America | 44.7 | |||||
| Wenzhou | East Asia | 80.8 (2017) [13] | 101.9 | ||||
| Hamburg | Western Europe | 120.1 (2015) [15] | 161.4 | 74 | |||
| Hanover | Western Europe | 51.5 (2015) [15] | 59.6 | ||||
| Kaohsiung | East Asia | 113.647 | 78 | 28 | |||
| Harrisburg | North America | 35.465 (2016) [8] | 35.1 | ||||
| Guadalajara | Central America | 80.7 | 81 | ||||
| Gothenburg | Northern Europe | 84.4 (2016) [9] | 40.0 | ||||
| Glasgow | Northern Europe | 66.4 (2016) [9] | 56.7 | ||||
| Hong Kong | East Asia | 364.8 (2018) [19] | 416.0 | 320 | 224.5 | 258.0 [20] | |
| Honolulu | North America | 64.756 (2016) [8] | 58.6 | ||||
| Goiania | South America | 22.763 (2011) [10] | |||||
| Grand rapids | North America | 58,465 (2016) [8] | 51.6 | ||||
| Greenville (South Carolina) | North America | 40.693 (2016) [8] | 35.6 | ||||
| Greensboro (North Carolina) | North America | 39.944 (2016) [8] | 40.9 | ||||
| Guangzhou | East Asia | 341 (2017) [13] | 380.3 | 143 | 146.1 | ||
| Dhaka | South asia | 78 | 29 | ||||
| Dallas - Fort Worth - Arlington | North America | 613.4 (2019) [21] | 412.7 | 338 | 324.9 | 315.5 [11] | |
| Dalian | East Asia | 109.1 (2017) [13] | 198.8 | 53.8 | |||
| Dar es Salaam | Africa | 8 | |||||
| Durham (North Carolina) | North America | 43.908 (2016) [8] | 37.0 | ||||
| Daqing | East Asia | 39.7 (2017) [13] | 98.5 | ||||
| Des moines | North America | 50,246 (2016) [8] | 39.5 | ||||
| Dayton | North America | 40.572 (2016) [8] | 37.5 | ||||
| Delhi | South asia | 167 | 47.6 | ||||
| Denver | North America | 208.868 (2017) [8] | 169.7 | 165 | 131.6 [11] | ||
| Detroit | North America | 260.612 (2017) [8] | 207.5 | 253 | 198.6 [11] | ||
| Jaipur | South asia | 24 | 20 | ||||
| Jakarta | Southeast Asia | 186 (2018) [22] | 321.3 | 92 | 70.7 | ||
| Jacksonville | North America | 71,471 (2016) [8] | 63.8 | ||||
| Jeddah | West Asia | 160.6 | 72 | 75.9 | |||
| Georgetown (Penang) | Southeast Asia | 38.0 | |||||
| Doha | West Asia | 98.8 | |||||
| Dubai | West Asia | 82.9 | |||||
| Dublin | Northern Europe | 127.8 (2015) [9] | 90.1 | 61 | |||
| Dongguan | East Asia | 112.3 (2017) [13] | 141.1 | 62.7 | |||
| Dongying | East Asia | 56.3 (2017) [13] | 83.7 | ||||
| Durban | Africa | 48.9 | |||||
| Geneva | Western Europe | 44.0 | |||||
| Jundiai | South America | 81000 20,081 (2011) [10] | |||||
| Jerusalem | West Asia | 48.0 (2015) [23] | |||||
| Izmir | West Asia | 80.1 | 42 | ||||
| Indianapolis | North America | 143.873 (2017) [8] | 113.606 | ||||
| Islamabad | South asia | ||||||
| East rand | Africa | 55.3 | 54 | ||||
| Johannesburg | Africa | 82.9 | 110 | ||||
| Kabul | South asia | 14 | |||||
| Kagoshima | East Asia | 34.3 | |||||
| Cairo | Africa | 102.2 | 145 | ||||
| Calgary | North America | 97.9 | |||||
| Calcutta | South asia | 60.4 | 104 | ||||
| Campinas | South America | 40.525 (2011) [10] | 59.3 | ||||
| Campo Grande | South America | 9.211 (2011) [10] | |||||
| Campus dos goytakazis | South America | 16.174 (2011) [10] | |||||
| Kansas City (Missouri) | North America | 131.092 (2017) [8] | 105.9 | 91.2 [11] | |||
| Kano | Africa | 9 | |||||
| Kanpur | South asia | 26 | 4 | ||||
| Caracas | South America | 51.8 | 41 | 92 [24] | |||
| Karachi | South asia | 78 | 28 | ||||
| Cardiff - Newport | Northern Europe | 33.7 (2016) [9] | 36.0 | ||||
| Karlsruhe | Western Europe | 37.6 (2015) [9] | 137.1 | ||||
| Casablanca | Africa | 37.9 | 33 | ||||
| Katowice | Eastern Europe | 37.9 (2015) [9] | 122.3 | ||||
| Kaunas | Northern Europe | 10.0 (2016) [25] | |||||
| Gwangju | East Asia | 36.7 | |||||
| Quebec | North America | 33.4 | |||||
| Cape town | Africa | 58.9 | 103 | ||||
| Cambridge | Northern Europe | 18.6 [26] | |||||
| Kiev | Eastern Europe | 20 (2016) [27] | |||||
| Kingston upon hull | Northern Europe | 17.7 (2016) [9] | |||||
| Kinshasa | Africa | 17 | |||||
| Klaipeda | Northern Europe | 6.0 (2016) [28] | |||||
| Cleveland | North America | 138,980 (2017) [8] | 115.1 | 112 | 99.3 [11] | ||
| Coventry | Northern Europe | 7.4 (2008) [5] | |||||
| Columbus (Ohio) | North America | 136,296 (2017) [8] | 108.9 | ||||
| Colombia | North America | 40,086 (2016) [8] | 37.2 | ||||
| Copenhagen | Northern Europe | 134.3 (2016) [9] | 127.0 [Footnote 3] | 49 | |||
| Krakow | Eastern Europe | 22.0 (2015) [9] | 33.1 | ||||
| Kuala lumpur | Southeast Asia | 171.8 | |||||
| Kumamoto | East Asia | 41.8 | |||||
| Kunming | East Asia | 72.0 (2017) [13] | 88.6 | ||||
| Curitiba | South America | 58,082 (2011) [10] | 57.7 | 44 | |||
| Lagos | Africa | 74.67 (2010) [29] | 35 | ||||
| Lucknow | South asia | 22 | |||||
| Las Vegas | North America | 112,288 (2017) [8] | 93.9 | ||||
| Lahore | South asia | 40 | 13 | ||||
| Leipzig - Halle | Western Europe | 33.4 (2015) [9] | 39.6 | ||||
| Leicester | Northern Europe | 46.8 (2016) [9] | 28.7 [30] | ||||
| Liverpool | Northern Europe | 47.8 (2016) [9] | 65.8 | ||||
| Leeds | Northern Europe | 44.8 (2016) [9] | 74.6 [Footnote 4] | 60 | |||
| Lille | Western Europe | 83.3 (2015) [9] | 98.5 | 33 | |||
| Lima | South America | 176.5 | 109 | 77.3 | |||
| Linz | Western Europe | 37.9 (2015) [9] | 44.6 | ||||
| Lyon | Western Europe | 88.2 (2016) [9] | 97.0 | 69 | 197 [31] | ||
| Lisbon | Southern Europe | 72.0 (2015) [9] | 96.3 | 98 | |||
| Little rock | North America | 37.796 (2016) [8] | 40.7 | ||||
| London | Northern Europe | 879.5 (2016) [9] | 835.7 | 565 | 751.8 | ||
| Los Angeles | North America | 1043.735 (2017) [32] | 792 | 731.8 | 632.4 [11] | ||
| Luanda | Africa | 33 | 38.6 | ||||
| Louisville | North America | 74.968 (2016) [8] | 62,397 | ||||
| Luton | Northern Europe | 7.2 [33] | |||||
| Luxembourg - Trier | Western Europe | 62 (2014) [34] | 62 | ||||
| Madison (Wisconsin) | North America | 47.425 (2016) [8] | 41.8 | ||||
| Madrid | Southern Europe | 225.9 (2015) [9] | 262.3 | 230 | |||
| Miami | North America | 344.882 (2016) [8] | 262.7 | 292 | 235.9 | 231.8 [11] | |
| Macau | East Asia | 53.7 (2018) [35] | 53.9 | ||||
| Manaus | South America | 51.025 (2011) [10] | |||||
| Manila | Southeast Asia | 276.4 | 189 | ||||
| Manchester | Northern Europe | 113.7 (2016) [9] | 92.3 | 85 | |||
| Marseilles | Western Europe | 104.1 (2015) [9] | 60.3 | ||||
| Medan | Southeast Asia | 10 (2017) [36] | 8.09 [37] | ||||
| Medellin | South America | 43.5 | 50 | ||||
| Melbourne | Oceania | (2015–16) [38] | 178.4 | 172 | 221.4 | ||
| Memphis (Tennessee) | North America | 71,450 (2016) [8] | 65.0 | ||||
| Mexico city | Central America | 403.6 | 390 | 255.1 | |||
| Milan | Southern Europe | 671.22 (2018) [9] | 312.1 | 136 | |||
| Milwaukee | North America | 105,427 (2017) [8] | 86.5 | ||||
| Minneapolis - Saint Paul | North America | 260.106 (2017) [8] | 211.4 | 194 | 171.6 [11] | ||
| Minsk | Eastern Europe | 13.0 (2012) [39] | |||||
| Montreal | North America | 155.9 | 148 | ||||
| Montevideo | South America | 44.0 [40] [Footnote 5] | |||||
| Monterrey | Central America | 122.9 | 102 | ||||
| Moscow | Eastern Europe | 213.3 (2016) [41] | 553.3 | 321 | 325.8 | ||
| Mumbai | South asia | 150.9 | 209 | 55.9 | |||
| Munich | Western Europe | (2016) [9] | 219.9 | 64 | |||
| Nagoya | East Asia | 368 (2013) [42] | 363.8 | 256.3 [43] | |||
| Nagpur | South asia | 18 | |||||
| Nairobi | Africa | 12 | |||||
| Nanking | East Asia | 173.5 (2017) | 202.7 | 68.5 | |||
| Nantes | Western Europe | 51.0 (2016) [9] | 32.0 | ||||
| Nanning | East Asia | 61.0 (2017) [13] | 70.3 | ||||
| Nantong | East Asia | 114.6 (2017) [13] | 128.3 | ||||
| Nanchang | East Asia | 74.1 (2017) [13] | 96.0 | ||||
| Nashville | North America | 133,251 (2017) [8] | 95.0 | ||||
| Naples | Southern Europe | 62.8 (2015) [9] | 85.5 | 51 | |||
| Niigata | East Asia | 50.3 | |||||
| Ningbo | East Asia | 145.8 (2017) [13] | 179.0 | 45.0 | |||
| Nice | Western Europe | 36.1 (2015) [9] | 46.0 | ||||
| New Orleans | North America | 77.173 (2016) [8] | 74.2 | ||||
| Knoxville | North America | 39.825 (2016) [8] | 38.3 | ||||
| Nottingham - Derby | Northern Europe | 51.0 | |||||
| New York | North America | 1717.712 (2017) [44] | 1403 | 1406 | 180.300000 1180.3 | 1056.4 [11] | |
| New Haven | North America | 44.120 (2016) [8] | 53.3 | ||||
| Newcastle upon Tyne | Northern Europe | 36.0 (2016) [9] | 44.6 | ||||
| Nuremberg-Furth | Western Europe | 164.6 (2014) [45] | 74.5 | ||||
| Okayama | East Asia | 56.8 | |||||
| Oklahoma city | North America | 70.235 (2016) [8] | 70.010 | ||||
| Auckland (New Zealand) | Oceania | 49.5 | 55 | ||||
| Oxnard | North America | 48.516 (2016) [8] | 46.3 | ||||
| Albany (New York) | North America | 52,339 (2016) [8] | |||||
| Omaha | North America | 61.289 (2016) [8] | 51.2 | ||||
| Orlando | North America | 132,448 (2017) [8] | 116.2 | ||||
| Osaka Kobe | East Asia | 681 (2015) [46] | 671.3 [Footnote 6] | 417 | 612.8 [47] | ||
| Oslo | Northern Europe | 74.0 (2014) [48] | 74.4 | 40 | |||
| Austin (Texas) | North America | 148,750 (2017) [8] | 107.4 | ||||
| Ottawa | North America | 58.2 | |||||
| Paris | Western Europe | 850 (2016) [49] | 715.1 | 564 | |||
| Patna | South asia | 15 | 11 | ||||
| Beijing | East Asia | 441.4 (2017) [50] | 506.1 | 166 | 206.2 | ||
| Perth | Oceania | 112.2 (2015–16) [51] | 134.0 | ||||
| Pittsburgh | North America | 147.367 (2017) [8] | 138.4 | 99 | 102.1 [11] | ||
| Portland (Oregon) | North America | 171.772 (2017) [8] | 158.5 | 110 | 95.6 [11] | ||
| Portsmouth | Northern Europe | 25.9 (2016) [9] | 51.6 [Footnote 7] | ||||
| Porto | Southern Europe | 31.3 (2015) [9] | 43.0 | ||||
| Porto Alegre | South America | 45,50606 (2011) [10] | 62.1 | 66 | |||
| Prague | Eastern Europe | 73.0 (2016) [9] | 89.2 | 49 | |||
| Pretoria | Africa | 49.9 | |||||
| Providence | North America | 80,164 (2016) [8] | 78.114 | ||||
| Pune | South asia | 138 | 89 | 78 | 49 | ||
| Busan | East Asia | 296.5 | 121 | ||||
| Puebla | Central America | 38.1 | 42 | ||||
| Pyongyang | East Asia | 11 | |||||
| Rhine Ruhr | Western Europe | 350.30 (2014) [45] | 485.2 | 39 [Footnote 8] | 484.6 | ||
| Recife | South America | 36.448 (2011) [10] | 40.5 | 35 | |||
| Riga | Northern Europe | 16.0 (2014) [52] | |||||
| Rome | Southern Europe | (2015) [9] | 163.2 | 144 | |||
| Rio de Janeiro | South America | 209.366 (2011) [10] | 176.6 | 201 | 180.9 | ||
| Richmond | North America | 80,702 (2016) [8] | 71.589 | ||||
| Roles | North America | 83,288 (2017) [8] | 64.4 | ||||
| Rotterdam | Western Europe | 69.0 (2015) [9] | 320.6 [Footnote 9] | 46 | |||
| Rochester (New York) | North America | 55.426 (2016) [8] | 67.8 | ||||
| Saarbrücken | Western Europe | 41.7 | |||||
| Sacramento (California) | North America | 126.352 (2017) [8] | 127.4 | ||||
| Salvador | South America | 38.819 (2011) [10] | 38.5 | 10 | |||
| Thessaloniki | Southern Europe | 19.8 (2011) [53] | |||||
| San antonio | North America | 129,298 (2017) [8] | 102.771 | 146.3 [11] | |||
| San Bernardino - Riverside | North America | 157.931 (2017) [8] | 154.904 | ||||
| San diego | North America | 231.845 (2017) [8] | 202.5 | 191 | 172.9 | 146.3 [11] | |
| Sao josé dos campus | South America | 30.148 (2011) [10] | |||||
| Sao josé dos pinhais | South America | 14.726 (2011) [10] | |||||
| Sao paulo | South America | 582.079 (2013) [10] | 430.5 | 388 | 437.3 | ||
| San Francisco | North America | 500,710 (2017) [8] | 331.0 | 301 | 283.3 | 268.3 [11] | |
| San Jose (California) | North America | 275,293 (2017) [8] | 160.3 | ||||
| San Juan (Puerto Rico) | Caribbean | 42.7 | |||||
| St. Petersburg | Eastern Europe | 55.5 (2016) [41] | 119.6 | 91 | |||
| Santos | South America | 28.609 (2011) [10] | |||||
| Santiago | South America | 171.4 | 120 | 93.0 | |||
| Sapporo | East Asia | 80.5 | |||||
| Southampton | Northern Europe | 9.6 (2016) [9] | 51.6 [Footnote 10] | ||||
| Seville | Southern Europe | 39.8 (2015) [9] | 35.8 | ||||
| Sendai | East Asia | 75.3 | |||||
| St louis | North America | 161.281 (2017) [8] | 140.6 | 126 | 116.2 [11] | ||
| Seoul | East Asia | (2015) [54] | 845.9 | 291 | 233.3 | ||
| Xi'an | East Asia | 110.6 (2017) [13] | 124.2 | 31 | 40.6 | ||
| Shizuoka | East Asia | ||||||
| Sydney | Oceania | 302.7 (2015–16) [55] | 223.4 | 213 | 268.9 | ||
| Singapore | Southeast Asia | 349.5 (2018) [56] [57] | 365.9 | 215 | 222.7 | 267.9 [58] | |
| Hsinchu | East Asia | 38.4 | |||||
| Syracuse | North America | 32.683 (2016) [8] | 40.6 | ||||
| Seattle | North America | 356.572 (2017) [8] | 267.5 | 235 | 211.0 | 182.2 [11] | |
| Salt Lake City | North America | 87.801 (2017) [8] | 73.836 | ||||
| Sorocaba | South America | 21.313 (2011) [10] | |||||
| Sofia | Eastern Europe | 24.0 (2016) [9] | 43.8 | ||||
| Springfield (Massachusetts) | North America | 27.333 (2016) [8] | 32.8 | ||||
| Istanbul | West Asia | 348.7 | 182 | 188.2 | |||
| Stockholm | Northern Europe | 180 [59] | 143.0 | 70 | 208 [59] | ||
| Strasbourg | Western Europe | 37.3 | |||||
| Surabaya | Southeast Asia | 70 (2016) [60] | 102 (2016) [61] | ||||
| Surat | South asia | 59.8 | 36 | 14 | |||
| Suzhou (Jiangsu) | East Asia | 256.5 (2017) [13] | 339.0 | 52.7 | |||
| Xuzhou | East Asia | 97.8 (2017) [13] | 113.2 | 22.4 | |||
| Amoy | East Asia | 64.4 (2017) [13] | 76.1 | 30.4 | |||
| Taipei | East Asia | 327.3 | 160.3 | 172.5 [62] | |||
| Tainan | East Asia | 76.7 | |||||
| Taichung | East Asia | 114.7 | |||||
| Taiyuan | East Asia | 63.0 | |||||
| Tallinn | Northern Europe | 16.0 (2014) [63] | |||||
| Tulsa | North America | 58,248 (2016) [8] | 48.6 | 46.4 [64] | |||
| Tampa | North America | 146.349 (2017) [8] | 130.3 | 123 | 101 [11] | ||
| Tangshan | East Asia | 105.3 (2017) [65] | 162.3 | 33.6 | |||
| Taoyuan | East Asia | 86.8 | |||||
| Tbilisi | West Asia | 8.0 (2017) [66] | |||||
| Tehran | South asia | 127 | |||||
| Tel Aviv | West Asia | 153.3 | 122 | 114.8 | |||
| Tokyo | East Asia | 1893 (2015) [67] | 1617 | 1479 | 1874.7 | 1997.5 [68] 1797.9 [69] | |
| Toronto | North America | 303 (2014) [70] | 276.3 | 253 | 270.0 | ||
| Toulouse | Western Europe | 58.7 (2015) [9] | 47.4 | ||||
| Turin | Southern Europe | 76.9 (2015) [9] | 78.8 | 68 | |||
| Tucson | North America | 37,040 (2016) [8] | 41.2 | ||||
| Daegu | East Asia | 54.5 | 43 | ||||
| Daejeon | East Asia | 39.6 | |||||
| Tianjin | East Asia | 275.4 (2017) [71] | 372.0 | 74 | 128.8 | ||
| Uberlandia | South America | 14.728 (2011) [10] | |||||
| Urumqi | East Asia | 59.6 | |||||
| Wuxi | East Asia | 155.7 (2017) [13] | 211.5 | 47.0 | |||
| Wuhan | East Asia | 198.6 (2017) [13] | 231.6 | 52 | 82.2 | ||
| Faisalabad | South asia | 20.55 [72] | 14 | ||||
| Philadelphia | North America | 444.975 (2017) [8] | 346.5 | 388 | 314.5 | 295.2 [11] | |
| Phoenix | North America | 242.951 (2017) [8] | 207.1 | 200 | 181.6 | 160 [11] | |
| Florence | Southern Europe | 40.1 (2015) [9] | 52.5 | ||||
| Fortaleza | South America | 42,010 (2011) [10] | 35.2 | 25 | |||
| Foshan | East Asia | 141.4 (2017) [13] | 184.5 | 83.5 | |||
| Frankfurt am Main | Western Europe | 230.0 | |||||
| Fresno | North America | 40,465 (2016) [8] | 45.5 | ||||
| Fukuoka - Kitakyushu | East Asia | 185 (2013) [73] | 193.3 | 88 [Footnote 11] | 157.3 [74] | ||
| Fuzhou | East Asia | 105.2 (2017) [13] | 117.4 | 23.4 | |||
| Hyderabad (India) | South asia | 40.2 | 59 | ||||
| Haifa | West Asia | 40.4 | |||||
| Hamamatsu | East Asia | 52.3 | |||||
| Hanoi | Southeast Asia | 42 | |||||
| Huntsville (Alabama) | North America | 24.846 (2016) [8] | |||||
| Hangzhou | East Asia | 150.8 (2015) [75] | 219.5 | 70.5 | |||
| Harbin | East Asia | 94.1 (2017) [13] | 127.9 | 38.8 | |||
| Khartoum | Africa | 35 | |||||
| Hartford | North America | 90,318 (2017) [8] | 101.2 | ||||
| Helsinki | Northern Europe | 90.8 (2015) [9] | 77.1 | 58 | |||
| Hiroshima | East Asia | 74.9 | |||||
| Ho Chi Minh City | Southeast Asia | 71.1 | 58 | ||||
| Hohhot | East Asia | 70.1 | |||||
| Houston | North America | 490,074 (2017) [8] | 483.2 | 297 | 341.1 | 316.3 [11] | |
| Hefei | East Asia | 106.8 (2017) [13] | 120.9 | 31.2 | |||
| Jinan | East Asia | 106.7 (2017) [13] | 136.8 | 43.2 | |||
| Zibo | East Asia | 70.8 (2017) [13] | 100.3 | ||||
| Qingdao | East Asia | 163.5 (2017) [13] | 208.7 | 48.1 | |||
| Cincinnati | North America | 138.034 (2017) [8] | 110.9 | ||||
| Zurich | Western Europe | 109.1 | 52 | ||||
| Changzhou | East Asia | 98.1 (2017) [13] | 110.9 | 34.3 | |||
| Changchun | East Asia | 96.7 (2017) [13] | 124.5 | 26 | |||
| Changsha | East Asia | (2017) [13] | 186.4 | 40.3 | |||
| Chennai | South asia | 58.6 | 66 | ||||
| Zhongshan | East Asia | 51.1 (2017) [13] | 68.7 | ||||
| Zhuhai | East Asia | 38.0 (2017) [13] | 41.3 | ||||
| Zhengzhou | East Asia | 135.3 (2017) [13] | |||||
| Chicago | North America | 679.699 (2017) [8] | 563.2 | 574 | 496.4 | 461.4 [11] | |
| Chittagong | South asia | 24 | |||||
| Chongqing | East Asia | 288.8 (2017) [13] | 315.6 | 57 | 88.6 | ||
| Chengdu | East Asia | 205.7 (2017) [76] | 233.5 | 33 | 57.8 | ||
| Shanghai | East Asia | 469 (2017) [65] | 594.0 | 233 | 250.7 | 200.0 [77] | |
| Shantou | East Asia | 34.8 (2017) [65] | 38.7 | ||||
| Charlotte (North Carolina) | North America | 174.029 (2017) [8] | 126.2 | ||||
| Sheffield | Northern Europe | 17.4 (2016) [9] | 39.8 | ||||
| Shijiazhuang | East Asia | 95.7 (2017) [65] | 130.5 | ||||
| Stuttgart | Western Europe | 173.5 (2016) [9] | 157.8 | ||||
| Shenzhen | East Asia | 338 (2017) [78] | 363.2 | 141.5 | |||
| Shenyang | East Asia | 86.9 (2017) [65] | 189.3 | 44 | 64.3 | ||
| Edinburgh | Northern Europe | 41.8 (2016) [9] | 32.5 | ||||
| Edmonton | North America | 83.0 | |||||
| Eindhoven - Hertogenbosch | Western Europe | 91.5 | |||||
| Kuwait | West Asia | 166.5 | 117.5 | ||||
| El Paso (Texas) | North America | 28.644 (2016) [8] | 32.7 | ||||
| Riyadh | West Asia | 163.5 | 107 | 122.7 | |||
| Yangon | Southeast Asia | 24 | |||||
| Yantai | East Asia | 108.7 (2017) [13] | 149.0 |
- Footnotes
- ↑ Including Rotterdam
- ↑ Including Bratislava
- ↑ Including Malmö
- ↑ Including Bradford
- ↑ 2017 estimate based on $ 33 billion in 2010 and $ 61 billion in 2025 (((61 billion / 33 billion) ^ (1/15)) ^ 7) * 33 billion = $ 43,956.998 million
- ↑ Including Kyoto
- ↑ Including Southampton
- ↑ Includes only Cologne and Bonn in the PwC study
- ↑ Including Amsterdam
- ↑ Including Portsmouth
- ↑ Including only Fukuoka
See also
- List of countries by GDP
- List of European Union GRP agglomerations
- List of US GRP agglomerations
- List of cities by the high cost of moving
- List of regions with GRP over 100 billion US dollars
Notes
- ↑ Composition of macro geographical (continental) regions, geographical sub-regions, and selected economic and other groupings . United Nations. Date of treatment October 23, 2012.
- ↑ Global city GDP 2014 . Brookings Institution . Date of treatment May 8, 2015.
- ↑ Global city GDP rankings 2008-2025 (Unavailable link) . Pricewaterhouse Coopers. Date of treatment December 16, 2009. Archived on May 4, 2011.
- ↑ The Most Dynamic Cities of 2025 . Foreign policy Date of treatment August 24, 2012.
- ↑ 1 2 2008 estimate (xls). Office for National Statistics (March 6, 2012). Date of treatment August 13, 2013.
- ↑ Abu Dhabi Economic Report (PDF).
- ↑ 2015–16 est. / SGSEP AUD 78.251 million according to the SGS Economics and Planning table, i.e. US $ 59.1 billion at current exchange rates, using the 8 June 2017 AUD / USD exchange rate used by the IMF
- ↑ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 Gross Domestic Product by Metropolitan Area, 2016 . Bureau of Economic Analysis. US Department of Commerce (September 20, 2017). Date of treatment February 19, 2018.
- ↑ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Eurostat .
- ↑ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Posição ocupada pelos maiores municípios brasileiros em relação ao Produto Interno Bruto, Est. 2013 . IBGE (2013). Archived February 19, 2016.
- ↑ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2005 est. / Metropolitan Area G .
- ↑ PDRB kota Bandung atas dasar harga konstan 2010 menurut lapangan usaha juta rupiah 2010-2017 . bandungkota.bps.go.id . Date of treatment February 28, 2019.
- ↑ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 National Bureau of Statistics of China . data.stats.gov.cn . Date of treatment August 25, 2017.
- ↑ Statistical Yearbook of Serbia , pp. 146–47. Statistical Office of Serbia . GDP of Belgrade district in 2014 was 1,514,166 mio RSD x 0.0115 = 17.4 bn USD.
- ↑ 1 2 3 4 Baden-Württemberg, Statistisches Landesamt Aktuelle Ergebnisse - VGR dL (German) . www.statistik-bw.de . Date of appeal June 16, 2018.
- ↑ 2015–16 est. / SGSEP AUD 157.931 million according to the SGS Economics and Planning table, i.e. US $ 120.6 billion at current exchange rates, using the 8 June 2017 AUD / USD exchange rate used by the IMF
- ↑ https://ec.europa.eu/eurostat/documents/2995521/9618249/1-26022019-AP-EN.pdf/f765d183-c3d2-4e2f-9256-cc6665909c80
- ↑ Statistinių rodiklių analizė . Osp.stat.gov.lt. Date of treatment April 1, 2017.
- ↑ Hong Kong . International Monetary Fund . Date of treatment August 25, 2017.
- ↑ 2012 est. / CIA World Factbook: Hong Kong . CIA. Date of treatment February 3, 2013. Archived on May 14, 2009.
- ↑ http://www.usmayors.org/wp-content/uploads/2018/06/Metro-Economies-GMP-June-2018.pdf
- ↑ BPS Provinsi DKI Jakarta . jakarta.bps.go.id . Date of treatment February 28, 2019.
- ↑ Archived copy (inaccessible link) . Date of treatment March 3, 2019. Archived on October 6, 2015.
- ↑ Global cities of the future: An interactive map | McKinsey & Company , mckinsey.com .
- ↑ https://osp.stat.gov.lt/statistiniu-rodikliu-analize?id=8,446&status=A#/
- ↑ Booming city adding £ 12 billion to GDP . Cambridge News. Date of treatment August 11, 2008. Archived November 25, 2011.
- ↑ http://kiev.ukrstat.gov.ua/p.php3?c=255&lang=1
- ↑ Statistinių rodiklių analizė . Osp.stat.gov.lt. Date of treatment April 1, 2017.
- ↑ Lagos Gross Domestic Product . Lagos State Government (2010). Date of treatment March 16, 2015. Archived April 25, 2015.
- ↑ Leicester . Leicester and Leicestershire Enterprise Partnership (Autumn 2009). - "/ catid / 22 / LLEP ". Archived on August 13, 2013.
- ↑ GDP of Lyon . Insee (October 2014). - "/ catid / 22 / LLEP ".
- ↑ https://www.bea.gov/newsreleases/regional/gdp_metro/gdp_metro_newsrelease.htm
- ↑ GDP . Timetric (January 1, 2010).
- ↑ http://www.brookings.edu/research/global-metro-monitor/
- ↑ Macau . International Monetary Fund . Date of treatment August 25, 2017.
- ↑ Seri 2010 PDRB kota Medan atas dasar harga konstan 2010 menurut pengeluaran jua rupiah 2010-2017 . medankota.bps.go.id . Date of treatment February 28, 2019.
- ↑ Pemerintah Provinsi Sumatera Utara - Perekonomian Daerah . Sumutprov.go.id . Date of treatment April 1, 2017.
- ↑ 2015–16 est. / SGSEP AUD 303.560 million according to the SGS Economics and Planning table, i.e. US $ 229.188 billion at current exchange rates, using the 8 June 2017 AUD / USD exchange rate used by the IMF
- ↑ http://www.belstat.gov.by/bitrix/urlrewrite.php (inaccessible link)
- ↑ Global Cities of the Future . McKinsey. Date of treatment January 19, 2016.
- ↑ 1 2 Gross regional product :: Mordoviyastat . Mrd.gks.ru. Date of treatment March 3, 2019.
- ↑ Approx., 2013 est. / GDP of Aichi Prefecture is 37.8 trillion yen (approximately US $ 368 billion). Cabinet Office, Government of Japan. Retrieved August 14, 2016.
- ↑ 2010 est. / JPY 22.497 billion according to Urban Employment Area . Metropolitan Employment Area (MEA) Data . Center for Spatial Information Science, University of Tokyo .
- ↑ https://www.bea.gov/newsreleases/regional/gdp_metro/gdp_metro_newsrelease.htm
- ↑ 1 2 Bruttoinlandsprodukt in den Metropolregionen in Deutschland 2014 | Statistik (German) . Statista Date of appeal June 16, 2018.
- ↑ Keihanshin , 2019-01-29 , < https://en.wikipedia.org/w/index.php?title=Keihanshin&oldid=880805346 > . Retrieved February 23, 2019.
- ↑ 2010 est. / JPY 53.790 billion according to Urban Employment Area . Metropolitan Employment Area (MEA) Data . Center for Spatial Information Science, University of Tokyo .
- ↑ Regional Accounts, 2014 - Statistics Norway . National GDP at 2,707.8 bn NOK, Oslo at 17.1% of the total = 463 bn NOK x 0.16 = 74 bn USD.
- ↑ http://ec.europa.eu/eurostat/documents/2995521/8700651/1-28022018-BP-EN/15f5fd90-ce8b-4927-9a3b-07dc255dc42a 2016 est. / INSEE] € 681 billion according to INSEE, ie US $ 850 billion at current exchange rates, using the 2016 euro / dollar exchange rate
- ↑ 北京市 2017 年 国民经济 和 社会 发展 统计 公报 . bjstats.gov.cn . Date of treatment March 18, 2018.
- ↑ 2015–16 est. / SGSEP AUD 148.674 million according to the SGS Economics and Planning table, i.e. US $ 112.2 billion at current exchange rates, using the 8 June 2017 AUD / USD exchange rate used by the IMF
- ↑ http://www.sus.lv/en/21-gross-domestic-product
- ↑ Approx., 2011 est. / Eurostat. Archived on October 6, 2014. Retrieved May 11, 2017.
- ↑ 2015 est. Statistics Korea Seoul metro area includes Incheon and Gyeonggi-do, so metro GDP = 328.661 + 69.501 + 350.963 = 749.125 billion Won, at 2015 average exchange rate of 1,179KRW per USD.
- ↑ 2015–16 est. / SGSEP AUD 400,900 million according to the SGS Economics and Planning table, i.e. US $ 302.7 billion at current exchange rates, using the 8 June 2017 AUD / USD exchange rate used by the IMF
- ↑ 2011 est. / Singapore: Economic Indicators . Statistics Singapore. Date of treatment February 3, 2013. Archived February 21, 2009.
- ↑ Singapore GDP in 2011 estimate is 326.8 Billion SGD, which is equivalent to 263.6 Billion USD using 3 February 2013 exchange rate
- ↑ 2012 est. / CIA World Factbook: Singapore . CIA. Date of treatment February 3, 2013.
- ↑ 1 2 Contacts - City of Stockholm . International.stockholm.se . Date of treatment April 1, 2017.
- ↑ East Java BPS, Statistics Indonesia Surabaya Urban Area (Surabaya + Gresik + Sidoarjo) (indon.) (Unavailable link) . jatim.bps.go.id . Date of treatment March 3, 2019. Archived on February 28, 2019.
- ↑ East Java BPS, Statistics Indonesia Gerbangkertosusila - Surabaya Metropolitan Area (Gresik + Bangkalan + Mojokerto city and regency + Surabaya + Sidoarjo + Lamongan) (indonesia) (link not available) . jatim.bps.go.id . Date of treatment March 3, 2019. Archived on February 28, 2019.
- ↑ 2009 est. Taipei city has second-highest per capita GDP in Asia Archived January 22, 2013.
- ↑ http://issuu.com/eas-estonia/docs/wtoe_harjumk?e=1268773/4868082#222222
- ↑ 2011 est. , US Metro Economies Archived August 13, 2012. by IHS Global Insight for The US Conference of Mayors
- ↑ 1 2 3 4 5 Shanghai first Chinese city to top 3 trillion yuan GDP . China Daily . Date of treatment January 20, 2018.
- ↑ http://geostat.ge/index.php?action=page&p_id=119&lang=eng
- ↑ http://www.toukei.metro.tokyo.jp/tnenkan/tn-eindex.htm
- ↑ 2009 est. / World's Largest Metropolitan Regions by LRP . University of Toronto. Date of treatment March 1, 2009.
- ↑ 2010 est. / JPY 157.820 billion according to Urban Employment Area . Metropolitan Employment Area (MEA) Data . Center for Spatial Information Science, University of Tokyo .
- ↑ Economic Indicators . www1.toronto.ca . Date of treatment April 28, 2017. Archived September 29, 2017. Toronto CMA GDP was 334.1B CAD, converted at the average CAD / USD exchange rate of 1.104 for 2014.
- ↑ National Bureau of Statistics of China . http://data.stats.gov.cn . Date of treatment August 25, 2017.
- ↑ Punjab At A Glance (inaccessible link) . Punjab Board of Investment & Trade, Government of The Punjab (2016). Date of treatment April 15, 2017. Archived on April 16, 2017.
- ↑ Approx., 2013 est. / GDP of Fukuoka Prefecture is 19.0 trillion yen (approximately US $ 185 billion). Cabinet Office, Government of Japan. Retrieved August 14, 2016.
- ↑ 2010 est. / JPY 13.811 billion according to Urban Employment Area . Metropolitan Employment Area (MEA) Data . Center for Spatial Information Science ( University of Tokyo ).
- ↑ National Bureau of Statistics of China . data.stats.gov.cn . Date of treatment August 25, 2017.
- ↑ National Bureau of Statistics of China . data.stats.gov.cn . Date of treatment August 25, 2017.
- ↑ 2008 est. / Global woes pinch rise in city GDP . ShanghaiDaily (January 22, 2009). Date of treatment December 25, 2009.
- ↑ http://m.scmp.com/news/china/economy/article/2128310/shenzhen-88-cent-hi-tech-growth-roll-hit-y2tr-2017