Clever Geek Handbook
📜 ⬆️ ⬇️

Formula Binet (mechanics)

The Binet formula (mechanics) is a partial differential equation that allows one to determine the central force if the equation of the trajectory of a material point moving under its action is known, or to determine the trajectory by a given central force.

Content

Wording

Let the material point with massm {\ displaystyle m}   moves under the influence of a central forceF→ {\ displaystyle {\ vec {F}}}   . Then in the polar coordinate systemr {\ displaystyle r}   ,φ {\ displaystyle \ varphi}  

d2dφ2(oner)+oner=-Frmc2r2{\ displaystyle {\ frac {d ^ {2}} {d \ varphi ^ {2}}} \ left ({\ frac {1} {r}} \ right) + {\ frac {1} {r}} = - {\ frac {F_ {r}} {mc ^ {2}}} r ^ {2}}   .

Herec {\ displaystyle c}   - the so-called constant squares.

Conclusion

Consider the motion of a material point.m {\ displaystyle m}   under the influence of the central forceF→ {\ displaystyle {\ vec {F}}}   . Equation of motion of a pointmw→=F→ {\ displaystyle m {\ vec {w}} = {\ vec {F}}}   in projections on the polar axismwr=Fr {\ displaystyle mw_ {r} = F_ {r}}   ,mwφ=Fφ {\ displaystyle mw _ {\ varphi} = F _ {\ varphi}}   whereFφ=0 {\ displaystyle F _ {\ varphi} = 0}   . Radial accelerationwr=r¨-rφ˙2 {\ displaystyle w_ {r} = {\ ddot {r}} - r {\ dot {\ varphi}} ^ {2}}   transverse accelerationwφ=φ¨r+2r˙φ˙ {\ displaystyle w _ {\ varphi} = {\ ddot {\ varphi}} r + 2 {\ dot {r}} {\ dot {\ varphi}}}   . Getm(r¨-rφ˙2)=Fr {\ displaystyle m ({\ ddot {r}} - r {\ dot {\ varphi}} ^ {2}) = F_ {r}}   ,m(φ¨r+2r˙φ˙)=0 {\ displaystyle m ({\ ddot {\ varphi}} r + 2 {\ dot {r}} {\ dot {\ varphi}}) = 0}   . Transform the second equation:m(φ¨r+2r˙φ˙)=onerddt(r2φ˙)=0 {\ displaystyle m ({\ ddot {\ varphi}} r + 2 {\ dot {r}} {\ dot {\ varphi}}) = {\ frac {1} {r}} {\ frac {d} { dt}} (r ^ {2} {\ dot {\ varphi}}) = 0}   Consequently:r2φ˙=c {\ displaystyle r ^ {2} {\ dot {\ varphi}} = c}   wherec {\ displaystyle c}   - constant, called constant squares. Substituting the value of \ dot \ varphi fromr2φ˙=c {\ displaystyle r ^ {2} {\ dot {\ varphi}} = c}   into the equationm(r¨-rφ˙2)=Fr {\ displaystyle m ({\ ddot {r}} - r {\ dot {\ varphi}} ^ {2}) = F_ {r}}   getm(r¨-c2r3)=Fr {\ displaystyle m ({\ ddot {r}} - {\ frac {c ^ {2}} {r ^ {3}}}) = F_ {r}}   . Consistently findr˙=drdφφ˙=cr2drdφ=-cddφ(oner) {\ displaystyle {\ dot {r}} = {\ frac {dr} {d \ varphi}} {\ dot {\ varphi}} = {\ frac {c} {r ^ {2}}} {\ frac { dr} {d \ varphi}} = - c {\ frac {d} {d \ varphi}} ({\ frac {1} {r}})}   ,r¨=dr˙dt=dr˙dφφ˙=-c2r2d2dφ2(oner) {\ displaystyle {\ ddot {r}} = {\ frac {d {\ dot {r}}} {dt}} = {\ frac {d {\ dot {r}}} {d \ varphi}} {\ dot {\ varphi}} = - {\ frac {c ^ {2}} {r ^ {2}}} {\ frac {d ^ {2}} {d \ varphi ^ {2}}} ({\ frac {1} {r}})}   . Substitutingr¨ {\ displaystyle {\ ddot {r}}}   atm(r¨-c2r3)=Fr {\ displaystyle m ({\ ddot {r}} - {\ frac {c ^ {2}} {r ^ {3}}}) = F_ {r}}   findd2dφ2(oner)+oner=-Frmc2r2 {\ displaystyle {\ frac {d ^ {2}} {d \ varphi ^ {2}}} ({\ frac {1} {r}}) + {\ frac {1} {r}} = - {\ frac {F_ {r}} {mc ^ {2}}} r ^ {2}}   .

See also

  • Central power
  • Kepler's laws

Literature

  • Moses Iosifovich Bat. Theoretical mechanics in examples and problems: Dynamics . - Science, 1968. - p. 14. - 632 p.
  • Mikhail M. Gernet. The course of theoretical mechanics . - Higher school, 1973. - S. 325. - 461 p.
  • Zhukovsky N. Ye. Analytical mechanics . - Imperial Moscow Technical School , 1910. - 262 p. - ISBN 9785446096053 .

Notes

  1. ↑ Bugaenko G. A. , Malanin V. V. , Yakovlev V. I. Basics of Classical Mechanics. - M.: Higher School, 1999. - S. 86-87. - ISBN 5-06-003587-5
Source - https://ru.wikipedia.org/w/index.php?title=Bine_Formula_(mechanics)&oldid=98884528


More articles:

  • Artary
  • Kolhof, Jurry
  • Driving 15 km (Astrakhan region)
  • Hetum I
  • Masalovka (Oryol region)
  • Freestyle at the World Championships in freestyle and snowboard 2019 - halfpipe (men)
  • Bogoroditskoye (Novopetrovskoye Rural Settlement)
  • Koshelyovo (Sverdlovsk region)
  • Vetluga (river)
  • Ngusa

All articles

Clever Geek | 2019