The Binet formula (mechanics) is a partial differential equation that allows one to determine the central force if the equation of the trajectory of a material point moving under its action is known, or to determine the trajectory by a given central force.
Content
WordingLet the material point with mass {\ displaystyle m} moves under the influence of a central force {\ displaystyle {\ vec {F}}} . Then in the polar coordinate system {\ displaystyle r} , {\ displaystyle \ varphi}
- {\ displaystyle {\ frac {d ^ {2}} {d \ varphi ^ {2}}} \ left ({\ frac {1} {r}} \ right) + {\ frac {1} {r}} = - {\ frac {F_ {r}} {mc ^ {2}}} r ^ {2}} .
Here {\ displaystyle c} - the so-called constant squares.
ConclusionConsider the motion of a material point. {\ displaystyle m} under the influence of the central force {\ displaystyle {\ vec {F}}} . Equation of motion of a point {\ displaystyle m {\ vec {w}} = {\ vec {F}}} in projections on the polar axis {\ displaystyle mw_ {r} = F_ {r}} , {\ displaystyle mw _ {\ varphi} = F _ {\ varphi}} where {\ displaystyle F _ {\ varphi} = 0} . Radial acceleration {\ displaystyle w_ {r} = {\ ddot {r}} - r {\ dot {\ varphi}} ^ {2}} transverse acceleration {\ displaystyle w _ {\ varphi} = {\ ddot {\ varphi}} r + 2 {\ dot {r}} {\ dot {\ varphi}}} . Get {\ displaystyle m ({\ ddot {r}} - r {\ dot {\ varphi}} ^ {2}) = F_ {r}} , {\ displaystyle m ({\ ddot {\ varphi}} r + 2 {\ dot {r}} {\ dot {\ varphi}}) = 0} . Transform the second equation: {\ displaystyle m ({\ ddot {\ varphi}} r + 2 {\ dot {r}} {\ dot {\ varphi}}) = {\ frac {1} {r}} {\ frac {d} { dt}} (r ^ {2} {\ dot {\ varphi}}) = 0} Consequently: {\ displaystyle r ^ {2} {\ dot {\ varphi}} = c} where {\ displaystyle c} - constant, called constant squares. Substituting the value of \ dot \ varphi from {\ displaystyle r ^ {2} {\ dot {\ varphi}} = c} into the equation {\ displaystyle m ({\ ddot {r}} - r {\ dot {\ varphi}} ^ {2}) = F_ {r}} get {\ displaystyle m ({\ ddot {r}} - {\ frac {c ^ {2}} {r ^ {3}}}) = F_ {r}} . Consistently find {\ displaystyle {\ dot {r}} = {\ frac {dr} {d \ varphi}} {\ dot {\ varphi}} = {\ frac {c} {r ^ {2}}} {\ frac { dr} {d \ varphi}} = - c {\ frac {d} {d \ varphi}} ({\ frac {1} {r}})} , {\ displaystyle {\ ddot {r}} = {\ frac {d {\ dot {r}}} {dt}} = {\ frac {d {\ dot {r}}} {d \ varphi}} {\ dot {\ varphi}} = - {\ frac {c ^ {2}} {r ^ {2}}} {\ frac {d ^ {2}} {d \ varphi ^ {2}}} ({\ frac {1} {r}})} . Substituting {\ displaystyle {\ ddot {r}}} at {\ displaystyle m ({\ ddot {r}} - {\ frac {c ^ {2}} {r ^ {3}}}) = F_ {r}} find {\ displaystyle {\ frac {d ^ {2}} {d \ varphi ^ {2}}} ({\ frac {1} {r}}) + {\ frac {1} {r}} = - {\ frac {F_ {r}} {mc ^ {2}}} r ^ {2}} .
See also- Central power
- Kepler's laws
LiteratureNotes- ↑ Bugaenko G. A. , Malanin V. V. , Yakovlev V. I. Basics of Classical Mechanics. - M.: Higher School, 1999. - S. 86-87. - ISBN 5-06-003587-5