Clever Geek Handbook
📜 ⬆️ ⬇️

Bet number

Numbers bet (ℶ {\ displaystyle \ beth} {\ displaystyle \ beth} ) in mathematics - the cardinal numbers characterizing the power of an infinite set. The sequence of infinite cardinal numbers is usually written asℶ0,ℶone,ℶ2,ℶ3,... {\ displaystyle \ beth _ {0}, \ \ beth _ {1}, \ \ beth _ {2}, \ \ beth _ {3}, \ \ dots} {\ displaystyle \ beth _ {0}, \ \ beth _ {1}, \ \ beth _ {2}, \ \ beth _ {3}, \ \ dots} whereℶ {\ displaystyle \ beth} {\ displaystyle \ beth} Named after the second letter of the Hebrew alphabet ( beta ).

Numbers Beth are part of the hierarchy of alefs (ℵ0,ℵone,... {\ displaystyle \ aleph _ {0}, \ \ aleph _ {1}, \ \ dots} {\ displaystyle \ aleph _ {0}, \ \ aleph _ {1}, \ \ dots} ). They start the same way:ℶ0=ℵ0, {\ displaystyle \ beth _ {0} = \ aleph _ {0},} {\ displaystyle \ beth _ {0} = \ aleph _ {0},} and locationℶone {\ displaystyle \ beth _ {1}} \ beth_1 among alefs depends on the continuum hypothesis . If we accept the continuum hypothesis, thenℶone=ℵone {\ displaystyle \ beth _ {1} = \ aleph _ {1}} {\ displaystyle \ beth _ {1} = \ aleph _ {1}} (power of the continuum ), the reverse is also true. If we accept a more powerful generalized continuum hypothesis , then both hierarchies completely coincide:ℶα=ℵα {\ displaystyle \ beth _ {\ alpha} = \ aleph _ {\ alpha}} {\ displaystyle \ beth _ {\ alpha} = \ aleph _ {\ alpha}} for any indexα. {\ displaystyle \ alpha.} \ alpha. If we accept that the continuum hypothesis is incorrect, then there are manyℵ {\ displaystyle \ aleph} \ aleph which are notℶ {\ displaystyle \ beth} {\ displaystyle \ beth} .

Content

Definition

General definition for finite indexes:

ℶ0=ℵ0{\ displaystyle \ beth _ {0} = \ aleph _ {0}}  
ℶα+one=2ℶα{\ displaystyle \ beth _ {\ alpha +1} = 2 ^ {\ beth _ {\ alpha}}}  

For infinite indices:

ℶλ=sup{ℶα:α<λ}.{\ displaystyle \ beth _ {\ lambda} = \ sup \ {\ beth _ {\ alpha}: \ alpha <\ lambda \}.}  

Examples

  • bet-zero (ℶ0 {\ displaystyle {\ displaystyle \ beth _ {0}}}   ) - equal toℵ0 {\ displaystyle {\ displaystyle \ aleph _ {0}}}   .
  • bet one (ℶone {\ displaystyle \ beth _ {1}}   ) - a lot of continuum .
  • bet two (ℶ2 {\ displaystyle \ beth _ {2}}   ) - 2 c , for example, a boolean of real numbers.
  • bet omega (ℶω {\ displaystyle \ beth _ {\ omega}}   ) - the smallest innumerable strong cardinal limit.

Literature

  • Forster TE Set Theory with the Universal Set: Exploring an Untyped Universe, Oxford University Press , 1995 - Beth number is defined on page 5.
  • Bell, John Lane. Models and Ultraproducts: An Introduction. - reprint of 1974. - Dover Publications , 2006. - ISBN 0-486-44979-3 . See pages 6 and 204-205 for beth numbers.
  • Roitman, Judith. Introduction to Modern Set Theory. - Virginia Commonwealth University , 2011. - ISBN 978-0-9824062-4-3 . See page 109 for beth numbers.

Links

  • Cardinals and ordinals (Unc.) . https://www.math.wisc.edu/ .

Notes

Source - https://ru.wikipedia.org/w/index.php?title=Bet numbercholdold = 97982978


More articles:

  • National Council on Television and Radio of the Republic of Azerbaijan
  • Klimovich, Vladimir Viktorovich
  • Rotan, Gustav
  • Arab League
  • Kulikovo (Lipetsk Region)
  • Rogah, Anastasia Alexandrovna
  • Heroes of Socialist Labor of the Pskov Region
  • Beke, Zoltan
  • Davis, Rodney
  • Pereuvanie

All articles

Clever Geek | 2019