Clever Geek Handbook
📜 ⬆️ ⬇️

Lrp1

Protein 1, similar to a low density lipoprotein receptor , or a receptor for α2-microglobulin , or apolipoprotein E receptor ( English Low density lipoprotein receptor-related protein 1 ( LRP1 ); alpha-2-macroglobulin receptor (A2MR), apolipoprotein E receptor ( APOER ) , CD369) is a membrane protein of the low density lipoprotein receptor family that is involved in receptor-mediated endocytosis . The human gene product LRP1 [1] [2] [3] LRP1 is a signaling protein that plays a role in many biological processes, including lipoprotein metabolism, cell motility, and in pathologies such as neurodegenerative diseases, atherosclerosis, and cancer [4] [5]

Lrp1
Protein LRP1 PDB 1cr8.png
Available Structures
PDBSearch:
PDB ID List

Identifiers
, A2MR, APOER, APR, CD91, IGFBP3R, LRP, LRP1A, TGFBR5, low density lipoprotein receptor-related protein 1, LDL receptor related protein 1, KPA, IGFBP3R1, IGFBP-3R
External IDs
Associated Hereditary Diseases
Disease nameReferences
Migraine
migraine without aura
abdominal aortic aneurysm
Gene ontology
Functions

Cell component

Biological process

Sources: Amigo / QuickGO
RNA expression profile
PBB GE LRP1 200785 s at fs.png

PBB GE LRP1 200784 s at fs.png
Orthologists
KindsPersonMouse
Entrez
Ensembl
Uniprot
RefSeq (mRNA)

RefSeq (protein)

Locus (UCSC)
PubMed Search
Wikidata
View / Edit (Man)View / Edit (Mouse)

Structure

The LRP1 gene encodes a precursor protein with a molecular weight of 600 kDa, which, under the action of an intracellular protease, furin breaks down in the trans-section of the Golgi apparatus into two chains: 515 kDa alpha chain (extracellular protein) and 85 kDa beta chain ( cytoplasmic protein), which remain associated with each other by non-covalent bonds [4] [6] [7] . Like all proteins of the low density lipoprotein receptor family, LRP1 contains cysteine-rich complementary-type repeats, EGF repeats, beta-propeller domain, and cytoplasmic domain [5] . The large extracellular domain of LRP1α, or the alpha chain, contains ligand-binding domains numbered from I to IV, which include 2, 8, 10 and 11 cysteine ​​repeats, respectively [4] [5] [6] [7] . These repeats bind extracellular matrix proteins, growth factors, proteases, protease inhibitor complexes, and other lipoprotein metabolism proteins [4] [5] . Of the 4 ligand-binding domains, domains II and IV are responsible for the binding of most LRP1 ligands. [7] EGF repeats and β-propeller domains provide the release of ligands with decreasing pH occurring in the endosomes , while the β-propeller shifts the released ligand [5] . The transmembrane domain (LRP1β), or β-chain of a protein, contains 100 amino acids of the cytoplasmic C-terminus. The cytoplasmic motif NPxY plays a role in endocytosis and signal transmission . [four]

Functions

The LRP1 protein is expressed in almost all tissues. The highest receptor level is found in smooth muscle cells, hepatocytes and neurons [4] [5] . LRP1 plays a role in intracellular signaling and endocytosis, which are involved in many biological processes: lipid and lipoprotein metabolism, degradation of proteases, regulation of platelet growth factor receptor , maturation and recycling of integrins , regulation of vascular tone, regulation of permeability of the blood-brain barrier , cell migration, inflammation and apoptosis . It also plays a role in the development of neurodegenerative diseases, atherosclerosis and cancer [3] [4] [5] [6] [7] .

Basically, LRP1 is involved in the regulation of protein activity by binding the ligand as a co-receptor together with transmembrane or adapter proteins such as plasmin , followed by ligand degradation in lysosomes [5] [6] [7] . In lipoprotein metabolism, LRP1 binds apolipoprotein E , which stimulates the signaling pathway, which causes an increase in the level of intracellular cAMP , increases the activity of protein kinase A and inhibits the smooth muscle cell migration. In general, this leads to protection against vascular diseases [5] . While membrane-bound LRP1 provides purification from proteases and inhibitors, proteolytic cleavage of the ectodomain releases LRP1, which, on the contrary, competes with membrane LRP1, which leads to a delay in normal protein function [4] . Several sheddases are involved in the cleavage of the extracellular domain of LRP1, including ADAM10 , [8] ADAM12 , [9] ADAM17 [10] and MT1-MMP . [9] . LRP1 is constantly endocytosed from the membrane and again recycled to the cell membrane [5] .

Although the role of LRP1 in apoptosis is less studied, it is known that this requires the binding of LRP1 to tPA , which leads to the ERK1 / 2 signaling cascade and leads to increased cell survival [11] .

Role in Pathology

Alzheimer's Disease

The normal functioning of neurons requires cholesterol . Cholesterol is delivered to neurons by apoE- containing lipoproteins that bind to LRP1 receptors expressed on neurons. It is suggested that one of the causes of Alzheimer's disease may be a decrease in LRP1 mediated by APP metabolism, which ultimately leads to a decrease in neuronal cholesterol and an increase in amyloid beta (Aβ) [12] .

LRP1 also plays a role in the effective clearance of Aβ from the brain through the blood-brain barrier [13] [14] . It is known that the expression of LRP1 decreases in endothelial cells during aging in both humans and animals [15] [16] . The clearance mechanism is modulated by the apoE polymorphism, and the presence of the apoE4 isoform leads to reduced Aβ transcytosis in the blood-brain barrier models [17] . In addition, a decreased clearance of Aβ can occur due to increased cleavage of the ectodomain of LRP1 by sheddases, which also slows down the clearance of Aβ [18] .

Cardiovascular Disease

LRP1 plays a role in several processes associated with the development of cardiovascular disease. Atherosclerosis is the main cause of cardiovascular diseases such as stroke and myocardial infarction . In the liver, LRP1 plays an important role in removing atherogenic lipoproteins, such as chylomicron remnants and VLDL, and other proatherogenic components from the bloodstream [19] [20] . LRP1 also plays a cholesterol-dependent role in atherosclerosis by modulating the activity and cell localization of PDGFR-β in smooth muscle cells [21] [22] . Finally, macrophage LRP1 modulates the extracellular matrix and inflammatory response, which is important in the progression of atherosclerosis [23] [24] .

Interactions

See also

  • Low Density Lipoprotein Receptor Family

Literature

  • Li Z., Dai J., Zheng H., Liu B., Caudill M. An integrated view of the roles and mechanisms of heat shock protein gp96-peptide complex in eliciting immune response (Eng.) // Frontiers in Bioscience : journal. - Frontiers in Bioscience 2002. March ( vol. 7 ). - P. d731-51 . - DOI : 10.2741 / A808 . - PMID 11861214 .
  • van der Geer P. Phosphorylation of LRP1: regulation of transport and signal transduction (English) // Trends in Cardiovascular Medicine : journal. - 2002 .-- May ( vol. 12 , no. 4 ). - P. 160-165 . - DOI : 10.1016 / S1050-1738 (02) 00154-8 . - PMID 12069755 .
  • May P., Herz J. LDL receptor-related proteins in neurodevelopment (neopr.) // Traffic. - 2003. - May ( t. 4 , No. 5 ). - S. 291-301 . - DOI : 10.1034 / j.1600-0854.2003.00086_4_5.x . - PMID 12713657 .
  • Llorente-Cortés V., Badimon L. LDL receptor-related protein and the vascular wall: implications for atherothrombosis (English) // Arteriosclerosis, Thrombosis, and Vascular Biology : journal. - 2005 .-- March ( vol. 25 , no. 3 ). - P. 497-504 . - DOI : 10.1161 / 01.ATV.0000154280.62072.fd . - PMID 15705932 .
  • Huang SS, Huang JS TGF-beta control of cell proliferation (Eng.) // Journal of Cellular Biochemistry : journal. - 2005 .-- October ( vol. 96 , no. 3 ). - P. 447-462 . - DOI : 10.1002 / jcb.20558 . - PMID 16088940 .
  • Lillis AP, Mikhailenko I., Strickland DK Beyond endocytosis: LRP function in cell migration, proliferation and vascular permeability (English) // Journal of Thrombosis and Haemostasis : journal. - 2005 .-- August ( vol. 3 , no. 8 ). - P. 1884-1893 . - DOI : 10.1111 / j.1538-7836.2005.01371.x . - PMID 16102056 .

Notes

  1. ↑ Herz J., Hamann U., Rogne S., Myklebost O., Gausepohl H., Stanley KK Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL receptor suggest a physiological role as lipoprotein receptor (Eng.) // The EMBO Journal : journal. - 1988 .-- December ( vol. 7 , no. 13 ). - P. 4119-4127 . - PMID 3266596 .
  2. ↑ Myklebost O., Arheden K., Rogne S., Geurts van Kessel A., Mandahl N., Herz J., Stanley K., Heim S., Mitelman F. The gene for the human putative apoE receptor is on chromosome 12 in the segment q13-14 (Eng.) // Genomics : journal. - Academic Press , 1989 .-- July ( vol. 5 , no. 1 ). - P. 65-9 . - DOI : 10.1016 / 0888-7543 (89) 90087-6 . - PMID 2548950 .
  3. ↑ 1 2 Entrez Gene: LRP1 low density lipoprotein receptor-related protein 1 (neopr.) .
  4. ↑ 1 2 3 4 5 6 7 8 Etique N., Verzeaux L., Dedieu S., Emonard H. LRP-1: a checkpoint for the extracellular matrix proteolysis (Eng.) // BioMed Research International : journal. - 2013 .-- Vol. 2013 . - P. 152163 . - DOI : 10.1155 / 2013/152163 . - PMID 23936774 .
  5. ↑ 1 2 3 4 5 6 7 8 9 10 Lillis AP, Mikhailenko I., Strickland DK Beyond endocytosis: LRP function in cell migration, proliferation and vascular permeability (English) // Journal of Thrombosis and Haemostasis : journal. - 2005 .-- August ( vol. 3 , no. 8 ). - P. 1884-1893 . - DOI : 10.1111 / j.1538-7836.2005.01371.x . - PMID 16102056 .
  6. ↑ 1 2 3 4 Roy A., Coum A., Marinescu VD, Põlajeva J., Smits A., Nelander S., Uhrbom L., Westermark B., Forsberg-Nilsson K., Pontén F., Tchougounova E. Glioma -derived plasminogen activator inhibitor-1 (PAI-1) regulates the recruitment of LRP1 positive mast cells (Eng.) // Oncotarget : journal. - 2015 .-- June ( vol. 6 ). - P. 23647-23661 . - DOI : 10.18632 / oncotarget.4640 . - PMID 26164207 .
  7. ↑ 1 2 3 4 5 Kang HS, Kim J., Lee HJ, Kwon BM, Lee DK, Hong SH LRP1-dependent pepsin clearance induced by 2'-hydroxycinnamaldehyde attenuates breast cancer cell invasion // The International Journal of Biochemistry & Cell Biology : journal. - 2014 .-- August ( vol. 53 ). - P. 15-23 . - DOI : 10.1016 / j.biocel.2014.04.04.021 . - PMID 24796846 .
  8. ↑ Shackleton, B .; Crawford, F .; Bachmeier, C. Inhibition of ADAM10 promotes the clearance of Aβ across the BBB by reducing LRP1 ectodomain shedding (English) // Fluids and barriers of the CNS: journal. - 2016 .-- 8 August ( vol. 13 , no. 1 ). - P. 14 . - ISSN 2045-8118 . - DOI : 10.1186 / s12987-016-0038-x . - PMID 27503326 .
  9. ↑ 1 2 Selvais, Charlotte; D'Auria, Ludovic; Tyteca, Donatienne; Perrot, Gwenn; Lemoine, Pascale; Troeberg, Linda; Dedieu, Stéphane; Noël, Agnès; Nagase, Hideaki. Cell cholesterol modulates metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 (LRP-1) and clearance function (Eng.) // The FASEB Journal : journal. - Federation of American Societies for Experimental Biology 2017 .-- 31 March ( vol. 25 , no. 8 ). - P. 2770-2781 . - ISSN 0892-6638 . - DOI : 10.1096 / fj.10-169508 . - PMID 21518850 .
  10. ↑ Liu, Qiang; Zhang, Juan; Tran, Hien; Verbeek, Marcel M .; Reiss, Karina; Estus, Steven; Bu, Guojun. LRP1 shedding in human brain: roles of ADAM10 and ADAM17 (Eng.) // Molecular Neurodegeneration : journal. - 2009 .-- 16 April ( vol. 4 ). - P. 17 . - ISSN 1750-1326 . - DOI : 10.1186 / 1750-1326-4-17 . - PMID 19371428 .
  11. ↑ Hu K., Lin L., Tan X., Yang J., Bu G., Mars WM, Liu Y. tPA protects renal interstitial fibroblasts and myofibroblasts from apoptosis (English) // Journal of the American Society of Nephrology : journal. - 2008 .-- March ( vol. 19 , no. 3 ). - P. 503-514 . - DOI : 10.1681 / ASN.2007030300 . - PMID 18199803 .
  12. ↑ Liu Q., Zerbinatti CV, Zhang J., Hoe HS, Wang B., Cole SL, Herz J., Muglia L., Bu G. Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1 (eng. ) // Neuron : journal. - Cell Press 2007 .-- October ( vol. 56 , no. 1 ). - P. 66-78 . - DOI : 10.1016 / j.neuron.2007.08.08.008 . - PMID 17920016 .
  13. ↑ Deane, R; Bell, RD; Sagare, A; Zlokovic, BV Clearance of amyloid-β peptide across the blood-brain barrier: Implication for therapies in Alzheimer's disease (Eng.) // CNS & neurological disorders drug targets: journal. - 2017 .-- March 31 ( vol. 8 , no. 1 ). - P. 16-30 . - ISSN 1871-5273 . - PMID 19275634 .
  14. ↑ Storck, Steffen E .; Meister, Sabrina; Nahrath, Julius; Meißner, Julius N .; Schubert, Nils; Spiezio, Alessandro Di; Baches, Sandra; Vandenbroucke, Roosmarijn E .; Bouter, Yvonne. Endothelial LRP1 transports amyloid-β 1–42 across the blood-brain barrier (Eng.) // The Journal of Clinical Investigation : journal. - 2016 .-- 4 January ( vol. 126 , no. 1 ). - P. 123-136 . - ISSN 0021-9738 . - DOI : 10.1172 / JCI81108 . - PMID 26619118 .
  15. ↑ Kang, DE; Pietrzik, CU; Baum, L .; Chevallier, N .; Merriam, DE; Kounnas, MZ; Wagner, SL; Troncoso, JC; Kawas, CH Modulation of amyloid beta-protein clearance and Alzheimer's disease susceptibility by the LDL receptor-related protein pathway (English) // The Journal of Clinical Investigation : journal. - 2000 .-- 1 November ( vol. 106 , no. 9 ). - P. 1159-1166 . - ISSN 0021-9738 . - DOI : 10.1172 / JCI11013 . - PMID 11067868 .
  16. ↑ Shibata, M .; Yamada, S .; Kumar, SR; Calero, M .; Bading, J .; Frangione, B .; Holtzman, DM; Miller, CA; Strickland, DK Clearance of Alzheimer's amyloid-ss (1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier (Eng.) // The Journal of Clinical Investigation : journal. - 2000 .-- 1 December ( vol. 106 , no. 12 ). - P. 1489-1499 . - ISSN 0021-9738 . - DOI : 10.1172 / JCI10498 . - PMID 11120756 .
  17. ↑ Bachmeier, Corbin; Paris, Daniel; Beaulieu-Abdelahad, David; Mouzon, Benoit; Mullan, Michael; Crawford, Fiona. A multifaceted role for apoE in the clearance of beta-amyloid across the blood-brain barrier // Neuro-Degenerative Diseases: journal. - 2013 .-- 1 January ( vol. 11 , no. 1 ). - P. 13-21 . - ISSN 1660-2862 . - DOI : 10.1159 / 000337231 . - PMID 22572854 .
  18. ↑ Bachmeier, Corbin; Shackleton, Ben; Ojo, Joseph; Paris, Daniel; Mullan, Michael; Crawford, Fiona. Apolipoprotein E isoform-specific effects on lipoprotein receptor processing (English) // Neuromolecular medicine: journal. - 2017 .-- March 31 ( vol. 16 , no. 4 ). - P. 686–696 . - ISSN 1535-1084 . - DOI : 10.1007 / s12017-014-8318-6 . - PMID 25015123 .
  19. ↑ Gordts PL, Reekmans S., Lauwers A., Van Dongen A., Verbeek L., Roebroek AJ Inactivation of the LRP1 intracellular NPxYxxL motif in LDLR-deficient mice enhances postprandial dyslipidemia and atherosclerosis (English) // Arterirombrosrosis, English and Vascular Biology : journal. - 2009 .-- September ( vol. 29 , no. 9 ). - P. 1258-1264 . - DOI : 10.1161 / ATVBAHA.109.192211 . - PMID 19667105 .
  20. ↑ Rohlmann A., Gotthardt M., Hammer RE, Herz J. Inducible inactivation of hepatic LRP gene by cre-mediated recombination confirms role of LRP in clearance of chylomicron remnants (Eng.) // The Journal of Clinical Investigation : journal. - 1998 .-- February ( vol. 101 , no. 3 ). - P. 689-695 . - DOI : 10.1172 / JCI1240 . - PMID 9449704 .
  21. ↑ Boucher P., Gotthardt M., Li WP, Anderson RG, Herz J. LRP: role in vascular wall integrity and protection from atherosclerosis (English) // Science: journal. - 2003 .-- April ( vol. 300 , no. 5617 ). - P. 329-332 . - DOI : 10.1126 / science.1082095 . - . - PMID 12690199 .
  22. ↑ Boucher P., Li WP, Matz RL, Takayama Y., Auwerx J., Anderson RG, Herz J. LRP1 functions as an atheroprotective integrator of TGFbeta and PDFG signals in the vascular wall: implications for Marfan syndrome (English) / / PLOS ONE : journal. - 2007. - Vol. 2 , no. 5 . - P. e448 . - DOI : 10.1371 / journal.pone.0000448 . - . - PMID 17505534 .  
  23. ↑ Yancey PG, Ding Y., Fan D., Blakemore JL, Zhang Y., Ding L., Zhang J., Linton MF, Fazio S. Low density lipoprotein receptor-related protein 1 prevents early atherosclerosis by limiting lesional apoptosis and inflammatory Ly-6Chigh monocytosis: evidence that the effects are not apolipoprotein E dependent (Eng.) // Circulation : journal. - Lippincott Williams & Wilkins 2011 .-- July ( vol. 124 , no. 4 ). - P. 454-464 . - DOI : 10.1161 / CIRCULATIONAHA.111.032268 . - PMID 21730304 .
  24. ↑ Overton CD, Yancey PG, Major AS, Linton MF, Fazio S. Deletion of macrophage LDL receptor-related protein increases atherogenesis in the mouse (Eng.) // Circulation Research : journal. - 2007 .-- March ( vol. 100 , no. 5 ). - P. 670-677 . - DOI : 10.1161 / 01.RES.0000260204.40510.aa . - PMID 17303763 .
Source - https://ru.wikipedia.org/w/index.php?title=LRP1&oldid=100897425


More articles:

  • Shayakhmetova, Kunsulu Turgynbekovna
  • Al-Abbas Mosque
  • Bogdanov, Mikhail Gennadievich
  • Jena Romance
  • Khudiev, Asim Khalil oglu
  • Black Padun
  • Shooting in Strasbourg
  • Canadian Curling Championship for Men 1974
  • Shamiram Party
  • Fuchilo, Yaroslav Dmitrievich

All articles

Clever Geek | 2019