Clever Geek Handbook
📜 ⬆️ ⬇️

Rellich's theorem

In mathematical analysis and differential calculus, the Rellich theorem is a theorem on entire solutions of a differential equation , proved in 1940 by Franz Rellich .

Wording

Let in a differential equation

x˙=f(x,t){\ displaystyle {\ dot {x}} = f (x, t)}  

the right-hand side is everywhere convergent power series onx,t {\ displaystyle x, t}   ( whole function ). If there are two solutionsx=u(t) {\ displaystyle x = u (t)}   andx=v(t) {\ displaystyle x = v (t)}   which are entire functionst {\ displaystyle t}   then any other whole solutionx=w(t) {\ displaystyle x = w (t)}   has the form

w(t)=u(t)+(v(t)-u(t))c{\ displaystyle w (t) = u (t) + (v (t) -u (t)) c}  

with a properly selected constantc {\ displaystyle c}   . If af(x,t) {\ displaystyle f (x, t)}   not a linear functionx {\ displaystyle x}   , then there is no more than a countable number of constantscn {\ displaystyle c_ {n}}   for which the expression

u(t)+(v(t)-u(t))cn{\ displaystyle u (t) + (v (t) -u (t)) c_ {n}}  

is a solution and setcn {\ displaystyle c_ {n}}   cannot have an ending limit point .

The last statement can be reversed: there always exists a nonlinear differential equation with an integer right-hand side having an infinite series of integer solutionsu(t)+(v(t)-u(t))cn {\ displaystyle u (t) + (v (t) -u (t)) c_ {n}}   for any givenu(t),v(t) {\ displaystyle u (t), v (t)}   not equal to each other at any valuet {\ displaystyle t}   , and any set of numberscn {\ displaystyle c_ {n}}   (with a limit point except at infinity).

Consequences

A consequence of the Rellich theorem is that the general solutionx=x(t,C) {\ displaystyle x = x (t, C)}   nonlinear equationx˙=f(x,t) {\ displaystyle {\ dot {x}} = f (x, t)}   with the whole right-hand side it cannot be an entire function of t , while any linear differential equation with integer coefficients always has an integer common solution.

Links

  • Rellich, Fr. Ueber die ganzen Loesungen einer gewoehnlichen Differentialgleichung erster Ordnung (German) // Math. Ann. . - 1940 .-- T. 117 . - S. 587-589 .
  • Wittich G. Chapter V. Applications to ordinary differential equations // The latest research on unique analytic functions . - M .: Fizmatlit, 1960. - p. 114.
Source - https://ru.wikipedia.org/w/index.php?title=Teorema_Relliha&oldid=101057777


More articles:

  • Zyuzin, Igor Yuryevich
  • Solontsov, Peter Efimovich
  • Azarov, Nikolai Trifonovich
  • Krasheninnikov, Mikhail Vasilyevich
  • Mansbridge, Jane
  • Canadian Junior Curling Championship 2018
  • Belyakov, Konstantin Dmitrievich
  • Commemorative coins of the Russian Empire
  • Chepinoga, Vitaly Mikhailovich
  • Paramor, Junior

All articles

Clever Geek | 2019