Clever Geek Handbook
📜 ⬆️ ⬇️

Wheel (algebra)

A wheel (from the English Wheel theory , sometimes “roller” [1] ) is a type of algebra where the division operation is always defined. In particular, division by zero in them makes sense. Real numbers can be extended to a wheel, like any commutative ring .

The Riemann sphere can also be expanded to a wheel by attaching⊥ {\ displaystyle \ bot} \ bot where0/0=⊥ {\ displaystyle 0/0 = \ bot} {\ displaystyle 0/0 = \ bot} . The Riemann sphere is an extension of the complex plane by an element∞ {\ displaystyle \ infty} \ infty wherez/0=∞ {\ displaystyle z / 0 = \ infty} {\ displaystyle z / 0 = \ infty} for any complexz≠0 {\ displaystyle z \ neq 0} {\ displaystyle z \ neq 0} . but0/0 {\ displaystyle 0/0} 0/0 not defined in the Riemann sphere, but defined in its extension to the wheel.

The term wheel is inspired by a topological pictogram.⊙ {\ displaystyle \ odot} \ odot denoting the projective line along with an additional point⊥=0/0 {\ displaystyle \ bot = 0/0} {\ displaystyle \ bot = 0/0} . [2]

Content

Definition

Wheel is an algebraic structure(W,0,one,+,⋅,/) {\ displaystyle (W, 0,1, +, \ cdot, /)}   satisfying:

  • Addition and multiplication are commutative and associative , and0 {\ displaystyle 0}   andone {\ displaystyle 1}   represent their neutral elements .
  • //x=x{\ displaystyle // x = x}  
  • /(xy)=/x/y{\ displaystyle / (xy) = / x / y}  
  • xz+yz=(x+y)z+0z{\ displaystyle xz + yz = (x + y) z + 0z}  
  • (x+yz)/y=x/y+z+0y{\ displaystyle (x + yz) / y = x / y + z + 0y}  
  • 0⋅0=0{\ displaystyle 0 \ cdot 0 = 0}  
  • (x+0y)z=xz+0y{\ displaystyle (x + 0y) z = xz + 0y}  
  • /(x+0y)=/x+0y{\ displaystyle / (x + 0y) = / x + 0y}  
  • 0/0+x=0/0{\ displaystyle 0/0 + x = 0/0}  

Wheel Algebra

Wheels replace traditional division (a binary operator that is inverse to multiplication) with a unary operator that applies to one argument: “/x {\ displaystyle / x}   ". This is similar to the definition of the inversex-one {\ displaystyle x ^ {- 1}}   but not identical to him. In wheelsa/b {\ displaystyle a / b}   becomes a short record fora⋅/b=/b⋅a {\ displaystyle a \ cdot / b = / b \ cdot a}   and changes the rules of such algebras so that

  • 0x≠0{\ displaystyle 0x \ neq 0}   in general
  • x-x≠0{\ displaystyle xx \ neq 0}   in general
  • x/x≠one{\ displaystyle x / x \ neq 1}   in the general case, since/x {\ displaystyle / x}   does not coincide with the multiplicative inverse forx {\ displaystyle x}   .

If an item existsa {\ displaystyle a}   such thatone+a=0 {\ displaystyle 1 + a = 0}   , then it becomes possible to determine the negation (the opposite number )-x=ax {\ displaystyle -x = ax}   and subtractionx-y=x+(-y) {\ displaystyle xy = x + (- y)}   .

Some consequences:

  • 0x+0y=0xy{\ displaystyle 0x + 0y = 0xy}  
  • x-x=0x2{\ displaystyle xx = 0x ^ {2}}  
  • x/x=one+0x/x{\ displaystyle x / x = 1 + 0x / x}  

Then forx {\ displaystyle x}   at0x=0 {\ displaystyle 0x = 0}   and0/x=0 {\ displaystyle 0 / x = 0}   we get the usual

  • x-x=0{\ displaystyle xx = 0}  
  • x/x=one{\ displaystyle x / x = 1}  

Notes

  1. ↑ S. L. BLUMIN. DEVELOPMENT OF THE CONCEPT OF "NUMBER". SOME MODERN REPRESENTATIONS , Lipetsk: 2005 - pp. 13-17 ““ DEVELOPMENT OF THE CONCEPT ON THE NUMBER “BEFORE DIVIDING BY ZERO AND PROBLEMS OF DISTRIBUTION” (New technologies in education: International electronic scientific conference, collection of scientific books - Voronezh: VGPU, 2001. - P. 52-54.) (Russian)
  2. ↑ Carlström, 2004 .

Links

  • Setzer, Anton (1997), Wheels , < http://www.cs.swan.ac.uk/~csetzer/articles/wheel.pdf >   (project)
  • Carlström, Jesper (2004), Wheels - On Division by Zero , Mathematical Structures in Computer Science ( Cambridge University Press ). - T. 14 (1): 143–184 , DOI 10.1017 / S0960129503004110   (also online version ).
  • Eugene Kapinos. Dividing by zero is the norm. Part 1 , Part 2 , 2015 (Russian)


Source - https://ru.wikipedia.org/w/index.php?title=Wheel_(algebra)&oldid=95766162


More articles:

  • OpenLisp
  • Swiss Referendum on the Electoral System (1910)
  • Switzerland Stamp Referendum (1917)
  • Aubepin, Guillaume L '- Wikipedia
  • Overyanovskoe Lake
  • Tajikistan at the 2018 Summer Asian Games
  • Rohrbach Solution
  • Shuklina, Olga Alexandrovna
  • Lau Michael
  • Mironovo (Kaluga Region)

All articles

Clever Geek | 2019