Clever Geek Handbook
πŸ“œ ⬆️ ⬇️

Programmable cell death

Programmed cell death , or programmed cell death [1] , or programmed cell death [2] ( PCG , Eng. Programmed cell death ) - cell death that occurs due to programmed intracellular processes. By the second decade of the 21st century, there are more than ten known types of programmed cell death. Since 2005, the Nomenclature Commitee on Cell Death Committee has been involved in the classification of cell death types. Programmed cell death has been described for all large groups of eukaryotes : animals , plants , fungi , mucus, and even single-celled organisms (e.g., yeast ). PCH performs many functions both at the cell level and at the level of the whole organism: in animals it plays a crucial role in development , with its help damaged cells are eliminated, in plants it is involved in the formation of tissues consisting of dead cells, such as xylem . Programmed cell death is known not only in eukaryotes: several types of programmed death have been described in bacteria [3] . All types of programmed cell death can be divided into external, which are triggered by signals from outside the cell, and internal, caused by disturbances in the functioning of cells [4] .

Content

  • 1 Classification
    • 1.1 Lysosome-dependent cell death
    • 1.2 Autophagy-dependent cell death
    • 1.3 Immunogenic cell death
    • 1.4 Internal apoptosis
    • 1.5 External apoptosis
    • 1.6 Necrosis dependent on permeability of mitochondria
    • 1.7 Necroptosis
    • 1.8 Ferroptosis
    • 1.9 Pyroptosis
    • 1.10 Partanatosis
    • 1.11 Entosis
    • 1.12 NEToz
  • 2 Invertebrates
  • 3 In plants
  • 4 In mushrooms
  • 5 In the mucus
  • 6 In bacteria
  • 7 Physiological significance
  • 8 History of study
  • 9 notes

Classification

From the point of view of morphology , three main types of programmed cell death have been distinguished for a long time:

  • Cell death of type I, or apoptosis . With this form of cell death, compression of the cytoplasm , condensation of chromatin , fragmentation of the nucleus, and the so-called cell membrane , that is, budding of vesicles from it. In the end, the entire contents of the cell breaks down into vesicles (apoptotic bodies), which are phagocytosed by neighboring cells and cleaved in their lysosomes .
  • Cell death of type II, or autophagy . During autophagy, many vacuoles are formed in the cytoplasm of a collapsing cell, which are then phagocytosed and destroyed by neighboring cells.
  • Cell death of type III, or necrosis . Necrosis is characterized by the complete absence of traits inherent in apoptosis and autophagy. The remains of the destroyed cell trigger inflammation [4] .

Later, a more complex classification of types of programmed cell death was adopted, which is built not on morphological details, but on genetic , biochemical , pharmacological and functional features. However, the types of death identified in this way are further divided into two groups according to morphology: one group includes types of death that are morphologically close to apoptosis, and the other - those that are morphologically close to necrosis. Thus, each type of programmed cell death has its own set of properties, from completely apoptotic to completely necrotic [4] .

As of 2018, the following types of programmed cell death are distinguished [4] :

  • Lysosome-dependent cell death ( English Lysosome-dependent cell death, LDCD );
  • Autophagy-dependent cell death ( Autophagy-dependent cell death, ADCD );
  • ( born Immunogenic cell death, ICD );
  • Internal apoptosis ( English Intrinsic apoptosis );
  • External apoptosis ( English Extrinsic apoptosis );
  • Mitochondrial Permeability-related Necrosis (MPT) ( MPT-driven necrosis );
  • Necroptosis ( English Necroptosis );
  • Ferroptosis ( English Ferroptosis );
  • Pyroptosis ( English Pyroptosis );
  • ( English Parthanatosis );
  • Entosis ( Eng. Entosis );
  • NEToz ( English NETosis ).

Lysosome-dependent cell death

Lysosome-dependent cell death begins with disorders of cell homeostasis and permeabilization (permeability changes) of lysosome membranes . It is observed in many pathophysiological processes: inflammation, tissue remodeling (for example, breast tissue remodeling after lactation ), aging , neurodegenerative diseases , cardiovascular diseases and the response to intracellular pathogens [4] .

After permeabilization of the lysosome membranes, the contents of the latter enter the cytosol , where, among other things, proteolytic enzymes of the cathepsin family are destroyed, which destroy the contents of the cell. The processes preceding the permeabilization of lysosomal membranes and triggering it are not entirely clear. In some conditions, it occurs after permeabilization of the outer mitochondrial membrane during internal apoptosis. In other cases, permeabilization of lysosome membranes occurs earlier than mitochondrial membranes with the participation of protein . An important role in triggering an increase in the permeability of lysosomal membranes is played by reactive oxygen species [4] .

Autophagy-dependent cell death

 
Autophagosomes labeled with a fluorescent dye in hTERT-RPE1 cells

Autophagy-dependent cell death involves activation of the molecular mechanisms of autophagy (all or part) that lead to the formation of - double- membrane vesicles [5] [6] . Autophagy is an important process that forms part of the cellular response to stress, so its disorders lead to a variety of developmental defects and diseases. In Drosophila, autophagy is involved in the renewal of the lining of the middle intestine and the degradation of larval salivary glands . Autophagy-dependent cell death contributes to the pathogenesis of a number of diseases in humans . For example, in some pathological conditions, neurons die along the path of autophagy. A type of autophagy-dependent cell death involving Na + / K + -ATPase is known as autosis [4] .

Immunogenic Cell Death

Immunogenic cell death refers to those types of cell death that are accompanied by the activation of an adaptive immune response directed against endogenous (cellular) or exogenous ( viral ) antigens that a dying cell expresses . Relatively few factors cause immunogenic cell death: viral infections , some anticancer drugs (for example, anthracyclines and ), some types of radiotherapy , as well as photodynamic therapy based on hypericin . Typically, an immune response is triggered by the following damage -associated molecular patterns ( ) expressed by a dying cell: , ATP , HMGB1 protein, , nucleic acids derived from cancer cells , and annexin A1 [4] .

Internal Apoptosis

 
Generalized scheme of mammalian apoptosis

Various changes in the environment of the cell trigger internal apoptosis: the absence of growth factors , DNA damage, endoplasmic reticulum stress (EPR), reactive oxygen species , DNA replication dysfunctions, mitosis defects, and microtubule dysfunctions. Cells dying by apoptosis retain the integrity of the plasma membrane and some metabolic activity. They disintegrate into vesicles - apoptotic bodies that are phagocytosed by other cells. The critical stage of internal apoptosis is the irreversible permeabilization of external mitochondrial membranes, which is controlled by various proteins of the family. As a result, proapoptotic factors enter the cytosol, which are located in the . The most important of these is the respiratory chain protein cytochrome c . In the cytosol, it binds to the APAF1 protein and pro-caspase 9, forming a complex known as the apoptosome . In it, caspase 9 is activated, forming dimers , which cut themselves and thereby activate, and begins to activate other caspases , introducing cuts into them. Caspases are proteases that destroy all the proteins of a cell and cause cell death [4] .

External Apoptosis

External apoptosis is triggered by changes in the cell. A key role in triggering external apoptosis is played by two types of cell membrane receptors : death receptors , which are activated by binding to the ligand , and receptors, which are activated when their ligand concentration drops below a certain value. Death receptors include, for example, and a number of other receptors for the superfamily of tumor necrosis factors ( Eng. Tumor necrosis factor, TNF ). When the death receptor is activated, a special multi-protein complex is assembled at its intracellular part - DISC (from the English death-inducing silencing complex ). It regulates the activation and functioning of caspase 8 (or, in some cases, caspase 10). Following it, other caspases are also activated, which destroy cellular proteins and lead to its death [4] .

Mitochondrial Permeability Necrosis

MPT-dependent necrosis begins with special changes in intracellular conditions, such as severe oxidative stress and a significant increase in the concentration of calcium ions in the cytosol. The abbreviation MPT comes from English. mitochondrial permeability transition - a violation of the permeability of mitochondria, since in this type of cell death the inner mitochondrial membrane becomes permeable to small molecules , which leads to the disappearance of the electrochemical gradient on it, the osmotic destruction of both mitochondrial membranes and ultimately cell death in the form of necrosis [4] .

Necroptosis

 
Molecular mechanisms of necroptosis

Necroptosis is caused by various changes in the internal and external environment of the cell, which are detected by specific death receptors (for example, Fas), pathogen recognition receptors (for example, Toll-like receptors 3 and 4 ), as well as protein binding to Z-DNA . Morphologically, cell death occurs in the form of necrosis. The protein kinases and , which are activated by receptors, play a critical role in triggering necroptosis. Necroptosis is not only associated with the body's response to stress, it ensures the death of defective organisms before birth and is involved in the regulation of T-lymphocyte homeostasis in the adult body [4] .

Ferroptosis

Ferroptosis, as a rule, is preceded by serious damage to cellular lipids as a result of the formation of reactive oxygen species and the appearance of free iron ions in the cell. Lipid oxidation occurs precisely due to iron ions, for which this type of cell death got its name [7] . Morphologically, ferroptosis is a necrosis in which serious damage to the mitochondria occurs: they shrink, cristae disappear in them, and the outer membrane is destroyed. Caspases and autophagy proteins are not involved in ferroptosis. In this type of cell death, some polyunsaturated fatty acids , such as arachidonic acid , are oxidized , and lipid hydroperoxides are formed. Sometimes lipid oxidation can occur under the influence of lipoxygenase and cyclooxygenase enzymes . They are counteracted by glutathione peroxidase 4 (GSH4). Ferroptosis is also inhibited by ferrostatin-1, liprostatin-1, as well as vitamin E , coenzyme Q 10 and similar compounds with antioxidant activity, which distract the active forms of oxygen and prevent them from interacting with lipids [4] .

Pyroptosis

Pyroptosis is activated during innate immunity reactions. With pyroptosis, a special chromatin condensation occurs, which differs from chromatin condensation during apoptosis. The cell swells, membrane permeabilization occurs. In pyroptosis, the pro-inflammatory caspase 1 plays a leading role, but in some cases other caspases, for example, , appear instead. Pyroptosis is involved in the development of many pathological conditions, for example, fatal septic shock caused by bacterial lipopolysaccharides . It is the bacterial lipopolysaccharides that enter the cytoplasm of the cells of the host organism that probably play a leading role in triggering pyroptosis [4] .

Partanatosis

Partanatosis is a form of programmed cell death characterized by hyperactivation of poly (ADP-ribose) polymerase 1 ( ), a protein involved in the cellular response to DNA damage. However, partanatosis can occur not only with severe DNA damage by alkylation , but also with oxidative stress, hypoxia , hypoglycemia, or inflammation. The main role in the overactivation of PARP1, especially in neurons, is played by active forms of nitrogen , including nitric oxide NO . Hyperactivation of PARP1 has effects, such as depletion of the NAD + pool and ATP (which leads to disruption of the bioenergetic and redox balance of the cell), as well as the accumulation of polymers of poly (ADP-ribose) and poly (ADP-ribose) protein in mitochondria (due to which the membrane potential is lost and the outer mitochondrial membrane is permeabilized) [4] .

Π­Π½Ρ‚ΠΎΠ·

 
Π‘Ρ…Π΅ΠΌΠ° энтоза

Π­Π½Ρ‚ΠΎΠ· β€” это Ρ„ΠΎΡ€ΠΌΠ° ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΊΠ°Π½Π½ΠΈΠ±Π°Π»ΠΈΠ·ΠΌΠ°, которая происходит Π² Π·Π΄ΠΎΡ€ΠΎΠ²Ρ‹Ρ… тканях ΠΈ опухолях ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… . Живая ΠΊΠ»Π΅Ρ‚ΠΊΠ° поглощаСтся Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠΎΠΉ, Π½Π΅ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰Π΅ΠΉ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒΡŽ ΠΊ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ·Ρƒ. Часто, Π½ΠΎ Π½Π΅ всСгда, поглощённая ΠΊΠ»Π΅Ρ‚ΠΊΠ° ΠΏΠΎΠ³ΠΈΠ±Π°Π΅Ρ‚. Как ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, энтоз запускаСтся, ΠΊΠΎΠ³Π΄Π° ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Π°Ρ ΠΊΠ»Π΅Ρ‚ΠΊΠ° тСряСт ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ с Π²Π½Π΅ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΌ матриксом , хотя для этого ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΏΡ€ΠΈΡ‡ΠΈΠ½Ρ‹: нСотрСгулированная экспрСссия ΠΌΠΈΠΎΠ·ΠΈΠ½ΠΎΠ² ΠΏΡ€ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ΠΎΠ² , различия Π² мСханичСских свойствах сосСдних ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈ мСтаболичСский стрСсс. Π£ Ρ€Π°ΠΊΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ энтоз ΠΌΠΎΠΆΠ΅Ρ‚ Π·Π°ΠΏΡƒΡΠΊΠ°Ρ‚ΡŒΡΡ ΠΏΡ€ΠΈ ΠΌΠΈΡ‚ΠΎΠ·Π΅ . Π“ΠΈΠ±Π΅Π»ΡŒ ΠΏΠΎΠ³Π»ΠΎΡ‰Ρ‘Π½Π½ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π½Π΅ зависит ΠΎΡ‚ каспаз ΠΈ Π±Π΅Π»ΠΊΠΎΠ² BCL2, ΠΈΠ³Ρ€Π°ΡŽΡ‰ΠΈΡ… Π²Π°ΠΆΠ½Π΅ΠΉΡˆΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π΅. По ΠΊΡ€Π°ΠΉΠ½Π΅ΠΉ ΠΌΠ΅Ρ€Π΅ Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… случаях гибСль происходит Π² Π²ΠΈΠ΄Π΅ особой Ρ„ΠΎΡ€ΠΌΡ‹ Π°ΡƒΡ‚ΠΎΡ„Π°Π³ΠΈΠΈ [4] .

NETΠΎΠ·

 
Π‘Ρ…Π΅ΠΌΠ° NETΠΎΠ·Π°

ΠŸΠ΅Ρ€Π²ΠΎΠ½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎ эта Ρ„ΠΎΡ€ΠΌΠ° Π³ΠΈΠ±Π΅Π»ΠΈ Π±Ρ‹Π»Π° описана Ρƒ Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΠΎΠ² , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅, умирая, Π²Ρ‹Π±Ρ€Π°ΡΡ‹Π²Π°ΡŽΡ‚ Π½Π°Ρ€ΡƒΠΆΡƒ ΡΠ΅Ρ‚ΡŒ ΠΈΠ· Π²ΠΎΠ»ΠΎΠΊΠΎΠ½, содСрТащих Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½ ΠΈ гистоны , связанныС с Ρ†ΠΈΡ‚ΠΎΠ·ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ. Π­Ρ‚ΠΈ Π²ΠΎΠ»ΠΎΠΊΠ½Π° Π±Ρ‹Π»ΠΈ Π½Π°Π·Π²Π°Π½Ρ‹ Π°Π½Π³Π». neutrophil extracellulae traps (NET), ΠΈ Ρ„ΠΎΡ€ΠΌΠ° смСрти ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»Π° Π½Π°Π·Π²Π°Π½ΠΈΠ΅ NETΠΎΠ· ( Π°Π½Π³Π». NETosis ). Выброс NET ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Π·Π²Π°Π½ ΠΌΠΈΠΊΡ€ΠΎΠ±Π°ΠΌΠΈ , Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠ΅ΠΉ особых Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Toll-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ…). БущСствСнная доля Π”ΠΠš, входящСй Π² состав этих Π²ΠΎΠ»ΠΎΠΊΠΎΠ½, ΠΈΠΌΠ΅Π΅Ρ‚ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ , Π° Π½Π΅ ядСрноС происхоТдСниС. NET ΠΌΠΎΠ³ΡƒΡ‚ Π²Ρ‹Π±Ρ€Π°ΡΡ‹Π²Π°Ρ‚ΡŒ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, ΠΎΡ‚Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΎΡ‚ Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΠΎΠ²: Ρ‚ΡƒΡ‡Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ , эозинофилы ΠΈ Π±Π°Π·ΠΎΡ„ΠΈΠ»Ρ‹ , ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ выброс NET Π½Π΅ всСгда ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π³ΠΈΠ±Π΅Π»ΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ. NET ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹ΠΌ эффСктом; ΠΏΠΎΠΊΠ°Π·Π°Π½Π° ΠΈΡ… Ρ€ΠΎΠ»ΡŒ Π² Ρ‚Π°ΠΊΠΈΡ… заболСваниях, ΠΊΠ°ΠΊ Π΄ΠΈΠ°Π±Π΅Ρ‚ ΠΈ Ρ€Π°ΠΊ [4] .

Π£ бСспозвоночных

 
Апоптоз Ρƒ Π΄Ρ€ΠΎΠ·ΠΎΡ„ΠΈΠ»Ρ‹

ΠŸΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΡƒΠ΅ΠΌΠ°Ρ клСточная гибСль зафиксирована Ρƒ бСспозвоночных ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…, Π² частности, Ρƒ Π³ΡƒΠ±ΠΎΠΊ . Π£ Π³ΡƒΠ±ΠΎΠΊ ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‚ΡΡ Ρ‚Π°ΠΊΠΈΠ΅ Π±Π΅Π»ΠΊΠΈ ΠŸΠšΠ“, ΠΊΠ°ΠΊ каспазы, Π±Π΅Π»ΠΊΠΈ с ΠΈ Bcl-2 . Π‘ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΠ³ΠΎ, Bcl-2 Π³ΡƒΠ±ΠΎΠΊ подавляСт Π°ΠΏΠΎΠΏΡ‚ΠΎΠ· ΠΈ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡ‡Π½Ρ‹Ρ… [8] . ΠŸΠ΅Ρ€Π²ΠΎΠ½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎ молСкулярныС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ ΠŸΠšΠ“ Π±Ρ‹Π»ΠΈ описаны Ρƒ Π½Π΅ΠΌΠ°Ρ‚ΠΎΠ΄Ρ‹ Caenorhabditis elegans . ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ количСство ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² Ρ‚Π΅Π»Π΅ взрослого чСрвя Тёстко фиксировано ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ для всСх особСй, количСство Π°ΠΊΡ‚ΠΎΠ² ΠŸΠšΠ“ Ρ‚Π°ΠΊΠΆΠ΅ фиксировано: Π² Ρ…ΠΎΠ΄Π΅ развития чСрвя ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΡƒΠ±ΠΈΠ²Π°ΡŽΡ‚ сами сСбя Ρ€ΠΎΠ²Π½ΠΎ 131 Ρ€Π°Π·. ΠšΠ»ΡŽΡ‡Π΅Π²ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² ΠŸΠšΠ“ Ρƒ C. elegans ΠΈΠ³Ρ€Π°ΡŽΡ‚ Π±Π΅Π»ΠΊΠΈ Ced-4 ΠΈ Ced-3 с каспазной Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ. Π’ ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Ρ… условиях Ced-4 ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ Π±Π΅Π»ΠΊΠΎΠΌ Ced-9, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½ Π²ΠΎ внСшнСй ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π΅. Когда ΠΊΠ»Π΅Ρ‚ΠΊΠ° ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅Ρ‚ ΠΈΠ·Π²Π½Π΅ сигнал ΠΊ Π½Π°Ρ‡Π°Π»Ρƒ ΠŸΠšΠ“, Ced-9 инактивируСтся, Π° Ced-4 активируСтся ΠΈ Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΡƒΠ΅Ρ‚ Ced-3, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ запускаСт Ρ€Π°Π±ΠΎΡ‚Ρƒ ΠΏΡ€ΠΎΡ‚Π΅Π°Π· ΠΈ Π½ΡƒΠΊΠ»Π΅Π°Π· [9] . Π£ члСнистоногих ΠŸΠšΠ“ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ происходит ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ Π½Π΅Ρ€Π²Π½ΠΎΠΉ систСмы , ΠΊΠΎΠ³Π΄Π° происходят Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠ° ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ эктодСрмы , ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ ΠΎΠ΄Π½Π° ΠΈΠ· Π΄ΠΎΡ‡Π΅Ρ€Π½ΠΈΡ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ становится нСйробластом , Π° другая ΠΏΠΎΠ³ΠΈΠ±Π°Π΅Ρ‚ [10] . Π‘ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΠ³ΠΎ, вслСдствиС ΠŸΠšΠ“ Ρƒ самцов ΠΈ самок Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΡ€Π³Π°Π½Ρ‹ ΠΈΠ½Π½Π΅Ρ€Π²ΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΠΏΠΎ-Ρ€Π°Π·Π½ΠΎΠΌΡƒ [11] . Π£ ΠΏΠ»ΠΎΠ΄ΠΎΠ²ΠΎΠΉ ΠΌΡƒΡˆΠΊΠΈ Drosophila melanogaster имССтся нСсколько каспаз ΠΈ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€ΠΎΠ² Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π°, ΠΊΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ ΠŸΠšΠ“, Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ REAPER, HID ΠΈ GRIM, ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ спСцифичны для насСкомых [12] .

Π£ растСний

Π£ растСний программируСмая клСточная гибСль Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ ксилСмы ΠΈ сСмян , старСнии , ΠΏΡ€Π΅Π΄ΠΎΡ‚Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠΈ самоопылСния , Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ΄ дСйствиСм стрСссов (солСвого, Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ , ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ) ΠΈ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½ΠΎΠ² . Как ΠΈ Ρƒ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…, Ρƒ растСний сущСствуСт нСсколько Π²ΠΈΠ΄ΠΎΠ² ΠŸΠšΠ“, ΠΎΠ΄Π½Π°ΠΊΠΎ Ρ‡Π°Ρ‰Π΅ всСго ΠΎΠ½Π° сходна с Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·ΠΎΠΌ ΠΈ сопровоТдаСтся Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠ΅ΠΉ Π”ΠΠš, Π²Ρ‹Ρ…ΠΎΠ΄ΠΎΠΌ Ρ†ΠΈΡ‚ΠΎΡ…Ρ€ΠΎΠΌΠ° c ΠΈΠ· ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ, сТатиСм ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ кислорода ΠΈ Π²Ρ‹Ρ…ΠΎΠ΄ΠΎΠΌ фосфатидилсСрина Π½Π° внСшний слой ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹. Π’ Ρ‚ΠΎ ΠΆΠ΅ врСмя, хотя Ρƒ растСний ΠΎΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ каспазы, извСстно, Ρ‡Ρ‚ΠΎ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Ρ‹ каспаз ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΠΎΠ΄Π°Π²Π»ΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΡƒΠ΅ΠΌΡƒΡŽ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΡƒΡŽ ΡΠΌΠ΅Ρ€Ρ‚ΡŒ ΠΈ Ρƒ растСний. Главная Ρ€ΠΎΠ»ΡŒ Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π³ΠΈΠ±Π΅Π»ΠΈ Ρƒ растСний ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ β€” сСрин -зависимым аспартат -спСцифичным ΠΏΡ€ΠΎΡ‚Π΅Π°Π·Π°ΠΌ. Π’ Π·Π΄ΠΎΡ€ΠΎΠ²Ρ‹Ρ… тканях фитаспазы находятся Π² апопластС , Π° ΠΏΡ€ΠΈ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ ΠŸΠšΠ“ входят Π² Ρ†ΠΈΡ‚ΠΎΠ·ΠΎΠ»ΡŒ [1] .

Π£ Π³Ρ€ΠΈΠ±ΠΎΠ²

Π£ Π³Ρ€ΠΈΠ±ΠΎΠ² программируСмая клСточная гибСль Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ спор ΠΏΠΎΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΈ бСсполого размноТСния , Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠ»ΠΎΠ΄ΠΎΠ²ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π° ΠΈΠ»ΠΈ склСроция , Π² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π²Π΅Π³Π΅Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ нСсовмСстимости, ΠΏΡ€ΠΈ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π·Π΅ , стрСссовых условиях ΠΈ Π½Π° Π·Π°ΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… этапах старСния. Π­Ρ‚ΠΈΠΌ Π½Π°Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠŸΠšΠ“ Ρƒ Π³Ρ€ΠΈΠ±ΠΎΠ² отличаСтся ΠΎΡ‚ Ρ‚Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ Ρƒ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠ½Π° ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго Π²Π°ΠΆΠ½Π° для развития. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС ΠŸΠšΠ“ Π³Ρ€ΠΈΠ±ΠΎΠ² Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Π° Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΌΡƒ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Ρƒ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…. ΠŸΠšΠ“ Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½Π° Ρƒ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Saccharomyces cerevisiae ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π·Π°ΠΏΡƒΡΠΊΠ°Ρ‚ΡŒΡΡ Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠΌΠΈ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ, ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ внСшний ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠŸΠšΠ“ Π½Π΅ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½. Π£ Π½ΠΈΡ… Π½Π΅Ρ‚ ΠΈ ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½Ρ‹Ρ… Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΎΠ² ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π° ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ Bcl-2, p53 , , PARP ΠΈ Π΄Π°ΠΆΠ΅ каспазы. Π’ Ρ‚ΠΎ ΠΆΠ΅ врСмя Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… рСгуляторных апоптотичСских Π±Π΅Π»ΠΊΠΎΠ² ΠΎΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Ρƒ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ, Π½ΠΎ Π΅ΡΡ‚ΡŒ Ρƒ ΠΌΠΈΡ†Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π³Ρ€ΠΈΠ±ΠΎΠ². Π£ ΠŸΠšΠ“ проявляСтся ΠΏΡ€ΠΈ старСнии мицСлия, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ обусловлСно дСйствиСм Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ кислорода. Π’ Ρ…ΠΎΠ΄Π΅ ΠŸΠšΠ“ Ρƒ P. anserina Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΡƒΡŽΡ‚ цистСиновыС ΠΏΡ€ΠΎΡ‚Π΅Π°Π·Ρ‹ с каспазной Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ [2] .

У слизСвиков

ПлодовоС Ρ‚Π΅Π»ΠΎ слизСвика Dictyostelium discoideum ΠΈΠΌΠ΅Π΅Ρ‚ Π½ΠΎΠΆΠΊΡƒ, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½ΡƒΡŽ ΠΌΡ‘Ρ€Ρ‚Π²Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ. Π­Ρ‚ΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π»ΠΈΡΡŒ ΠŸΠ“Πš, ΠΏΠΎΡ…ΠΎΠΆΠ΅ΠΉ Π½Π° Π°ΡƒΡ‚ΠΎΡ„Π°Π³ΠΈΡŽ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΏΠΎ стСпСни развития Π²Π°ΠΊΡƒΠΎΠ»Π΅ΠΉ ΠΈ кондСнсации Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° , ΠΊΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π°, Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ Π”ΠΠš Π½Π΅ происходит [13] . ΠŸΡ€Π΅Π΄ΠΊΠΈ слизСвиков ΠΎΡ‚Π΄Π΅Π»ΠΈΠ»ΠΈΡΡŒ ΠΎΡ‚ ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… эукариот Π±ΠΎΠ»Π΅Π΅ ΠΌΠΈΠ»Π»ΠΈΠ°Ρ€Π΄Π° Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄ Π΄ΠΎ отдСлСния ΠΏΡ€Π΅Π΄ΠΊΠΎΠ² растСний ΠΈ Π³Ρ€ΠΈΠ±ΠΎΠ², Ρ‡Ρ‚ΠΎ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎ Π΄Ρ€Π΅Π²Π½Π΅ΠΌ происхоТдСнии ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π³ΠΈΠ±Π΅Π»ΠΈ [14] .

Π£ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ

Π£ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ извСстно нСсколько Ρ„ΠΎΡ€ΠΌ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π³ΠΈΠ±Π΅Π»ΠΈ. Π’ условиях стрСсса (ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ стрСсса, воздСйствия Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΈ , Π½Π΅Ρ…Π²Π°Ρ‚ΠΊΠΈ ΠΏΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… вСщСств , Ρ„Π°Π³ΠΎΠ²ΠΎΠΉ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ ) Ρ‡Π°ΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΏΠΎΠ³ΠΈΠ±Π°Π΅Ρ‚ Π½Π° Π±Π»Π°Π³ΠΎ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΈ . Π§Π°Ρ‰Π΅ всСго ΡΠΌΠ΅Ρ€Ρ‚ΡŒ происходит ΠΏΡ€ΠΈ участии систСм токсин-антитоксин Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚ΠΈΠΏΠΎΠ². Π‘Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΈ , Π³Π΅Π½ΠΎΠΌ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… прСдставлСн Π΄Π²ΡƒΡ†Π΅ΠΏΠΎΡ‡Π΅Ρ‡Π½ΠΎΠΉ Π”ΠΠš, Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‚ гибСль Π·Π°Ρ€Π°ΠΆΡ‘Π½Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² ΠΊΠΎΠ½Ρ†Π΅ литичСского Ρ†ΠΈΠΊΠ»Π° для высвобоТдСния Π½ΠΎΠ²Ρ‹Ρ… Π²ΠΈΡ€ΠΈΠΎΠ½ΠΎΠ² с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ…ΠΎΠ»ΠΈΠ½-эндолизиновой систСмы. МалСнькиС Π±Π΅Π»ΠΊΠΈ Π²ΡΡ‚Ρ€Π°ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π² ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρƒ, давая Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Ρ‹ΠΉΡ‚ΠΈ Π½Π°Ρ€ΡƒΠΆΡƒ . Π­Π½Π΄ΠΎΠ»ΠΈΠ·ΠΈΠ½Ρ‹ Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·ΡƒΡŽΡ‚ ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄ΠΎΠ³Π»ΠΈΠΊΠ°Π½ , Ρ€Π°Π·Ρ€ΡƒΡˆΠ°ΡŽΡ‚ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΡƒΡŽ стСнку ΠΈ Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‚ лизис ΠΊΠ»Π΅Ρ‚ΠΊΠΈ. Π“ΠΈΠ±Π΅Π»ΡŒ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ Π½Π° Ρ€Π°Π·Π½Ρ‹Ρ… этапах Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΈ ΠΈ ΠΏΡ€ΠΈ отсутствии стрСсса: ΠΏΡ€ΠΈ споруляции , гСнСтичСской трансформации , ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠ»ΠΎΠ΄ΠΎΠ²Ρ‹Ρ… Ρ‚Π΅Π» ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π±ΠΈΠΎΠΏΠ»Ρ‘Π½ΠΎΠΊ . ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π³ΠΈΠ±Π΅Π»ΠΈ Π²ΠΎ всСх пСрСчислСнных случаях Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ [3] .

ЀизиологичСскоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅

ЀизиологичСскоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π³ΠΈΠ±Π΅Π»ΠΈ ΠΎΠ³Ρ€ΠΎΠΌΠ½ΠΎ. Π£ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΎΠ½Π° ΠΈΠ³Ρ€Π°Π΅Ρ‚ Π²Π°ΠΆΠ½Π΅ΠΉΡˆΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΈΡ… ΠΎΡ€Π³Π°Π½ΠΎΠ² ΠΈ Ρ‚ΠΊΠ°Π½Π΅ΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ старСнии. Π’ Ρ…ΠΎΠ΄Π΅ развития Π½Π΅Ρ€Π²Π½ΠΎΠΉ систСмы мноТСство ΠΊΠ»Π΅Ρ‚ΠΎΠΊ-ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠΎΠ² Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ² ΠΏΠΎΠ³ΠΈΠ±Π°ΡŽΡ‚, Ρ‚Π°ΠΊ Ρ‡Ρ‚ΠΎ количСство Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ² Π² ΠΌΠΎΠ·Π³Π΅ взрослого ΠΆΠΈΠ²ΠΎΡ‚Π½ΠΎΠ³ΠΎ сущСствСнно мСньшС, Ρ‡Π΅ΠΌ ΠΈΡ… Π±Ρ‹Π»ΠΎ Π·Π°Π»ΠΎΠΆΠ΅Π½ΠΎ Π² Ρ…ΠΎΠ΄Π΅ ΡΠΌΠ±Ρ€ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ развития . Апоптоз задСйствован Π² ΠΌΠΎΡ€Ρ„ΠΎΠ³Π΅Π½Π΅Π·Π΅ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… (Π² частности, Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·ΠΎΠΌ ΠΏΠΎΠ³ΠΈΠ±Π°ΡŽΡ‚ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ°Π»ΡŒΡ†Π°ΠΌΠΈ, Π·Π° счёт Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π° ΠΎΡ‚ΠΏΠ°Π΄Π°Π΅Ρ‚ хвост Ρƒ головастика ). Π˜ΠΌΠΌΡƒΠ½ΠΎΠ³Π΅Π½Π½Π°Ρ клСточная ΡΠΌΠ΅Ρ€Ρ‚ΡŒ ΠΈ ΠΏΠΈΡ€ΠΎΠΏΡ‚ΠΎΠ· наряду с Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·ΠΎΠΌ задСйствованы Π² Ρ€Π°Π±ΠΎΡ‚Π΅ Π·Π°Ρ‰ΠΈΡ‚Π½Ρ‹Ρ… систСм ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°. ПодавлСниС ΠŸΠšΠ“ ΠΎΡ‡Π΅Π½ΡŒ часто связано со злокачСствСнным ΠΏΠ΅Ρ€Π΅Ρ€ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ [15] . Π£ растСний ΠŸΠšΠ“ участвуСт Π² ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ Ρ‚ΠΊΠ°Π½Π΅ΠΉ, состоящих ΠΈΠ· ΠΌΡ‘Ρ€Ρ‚Π²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ксилСмы. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π½Π° ΠŸΠšΠ“ основана ΡΠ°ΠΌΠΎΠ½Π΅ΡΠΎΠ²ΠΌΠ΅ΡΡ‚ΠΈΠΌΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ ΠΎΠΏΡ‹Π»Π΅Π½ΠΈΠΈ : Ссли Π½Π° Ρ€Ρ‹Π»ΡŒΡ†Π΅ ΠΏΠΎΠΏΠ°Π΄Π°Π΅Ρ‚ ΠΏΡ‹Π»ΡŒΡ†Π° ΠΎΡ‚ Ρ‚ΠΎΠ³ΠΎ ΠΆΠ΅ растСния, Ρ‚ΠΎ особыС Π±Π΅Π»ΠΊΠΈ Π½Π° Ρ€Ρ‹Π»ΡŒΡ†Π΅ Π·Π°ΠΏΡƒΡΠΊΠ°ΡŽΡ‚ ΠŸΠšΠ“ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΏΡ‹Π»ΡŒΡ†Π΅Π²ΠΎΠ³ΠΎ Π·Π΅Ρ€Π½Π° [16] . Π£ Π³Ρ€ΠΈΠ±ΠΎΠ² ΠŸΠšΠ“ обСспСчиваСт Π²Π΅Π³Π΅Ρ‚Π°Ρ‚ΠΈΠ²Π½ΡƒΡŽ Π½Π΅ΡΠΎΠ²ΠΌΠ΅ΡΡ‚ΠΈΠΌΠΎΡΡ‚ΡŒ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π½Π΅ Π΄Π°Ρ‘Ρ‚ ΡΠ»ΠΈΠ²Π°Ρ‚ΡŒΡΡ Π³ΠΈΡ„Π°ΠΌ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡˆΡ‚Π°ΠΌΠΌΠ° , Π° Ρ‚Π°ΠΊΠΆΠ΅ задСйствована Π² созрСвании спор ΠΏΠΎΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΈ бСсполого размноТСния [2] .

Study History

 
Ёсинори ΠžΡΡƒΠΌΠΈ

Π‘Π°ΠΌΠ° концСпция ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π³ΠΈΠ±Π΅Π»ΠΈ Π±Ρ‹Π»Π° ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ( Π°Π½Π³Π». Lockshin ) ΠΈ Уильямсом Π² 1964 Π³ΠΎΠ΄Ρƒ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Ρ‚ΠΊΠ°Π½Π΅ΠΉ Ρƒ насСкомых [17] . ΠŸΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Ρ‡Π΅Ρ€Π΅Π· 8 Π»Π΅Ρ‚ появился Ρ‚Π΅Ρ€ΠΌΠΈΠ½ Β«Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Β». ΠŸΠ΅Ρ€Π²Ρ‹Π΅ свСдСния ΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°Ρ… ΠŸΠšΠ“ появились ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ Π±Π΅Π»ΠΊΠ° Bcl-2 β€” ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π° ΠΎΠ½ΠΊΠΎΠ³Π΅Π½Π° , экспрСссия ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ активируСтся ΠΏΡ€ΠΈ хромосомных транслокациях , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ часто Π½Π°Π±Π»ΡŽΠ΄Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ фолликулярной Π»ΠΈΠΌΡ„ΠΎΠΌΠ΅ . Π’ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ Π΄Ρ€ΡƒΠ³ΠΈΡ… извСстных ΠΊ этому ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρƒ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² ΠΎΠ½ΠΊΠΎΠ³Π΅Π½ΠΎΠ², Bcl-2 Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ злокачСствСнноС ΠΏΠ΅Ρ€Π΅Ρ€ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π½Π΅ Π·Π° счёт Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ стимуляции дСлСния, Π° Π·Π° счёт прСдотвращСния ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π³ΠΈΠ±Π΅Π»ΠΈ [18] . По сСй дСнь программируСмая клСточная гибСль интСнсивно исслСдуСтся. Π’ 2002 Π³ΠΎΠ΄Ρƒ НобСлСвская прСмия ΠΏΠΎ Ρ„ΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅ Π±Ρ‹Π»Π° присуТдСна Π·Π° открытия Π² молСкулярной Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π³ΠΈΠ±Π΅Π»ΠΈ БиднСю Π‘Ρ€Π΅Π½Π½Π΅Ρ€Ρƒ , Π ΠΎΠ±Π΅Ρ€Ρ‚Ρƒ Π₯ΠΎΡ€Π²ΠΈΡ†Ρƒ ΠΈ Π”ΠΆΠΎΠ½Ρƒ Балстону [19] , Π° Π² 2016 Π³ΠΎΠ΄Ρƒ этой Π½Π°Π³Ρ€Π°Π΄Ρ‹ Π±Ρ‹Π» удостоСн Ёсинори ΠžΡΡƒΠΌΠΈ , исслСдовавший ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π²ΠΈΠ΄ΠΎΠ² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π³ΠΈΠ±Π΅Π»ΠΈ β€” Π°ΡƒΡ‚ΠΎΡ„Π°Π³ΠΈΡŽ [20] .

Notes

  1. ↑ 1 2 ΠŸΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΡƒΠ΅ΠΌΠ°Ρ клСточная ΡΠΌΠ΅Ρ€Ρ‚ΡŒ Ρƒ растСний // УспСхи биологичСской Ρ…ΠΈΠΌΠΈΠΈ. β€” 2012. β€” Π’. 52 . β€” Π‘. 97β€”126 .
  2. ↑ 1 2 3 Камзолкина О. Π’., ДунаСвский Π―. Π•. Биология Π³Ρ€ΠΈΠ±Π½ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ. β€” М. : ВоварищСство Π½Π°ΡƒΡ‡Π½Ρ‹Ρ… ΠΈΠ·Π΄Π°Π½ΠΈΠΉ КМК, 2015. β€” Π‘. 217β€”223. β€” 239 с. β€” ISBN 978-5-9906564-1-3 .
  3. ↑ 1 2 Allocati N. , Masulli M. , Di Ilio C. , De Laurenzi V. Die for the community: an overview of programmed cell death in bacteria. (Π°Π½Π³Π».) // Cell Death & Disease. β€” 2015. β€” 22 January ( vol. 6 ). β€” P. e1609β€”1609 . β€” DOI : 10.1038/cddis.2014.570 . β€” PMID 25611384 .
  4. ↑ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Galluzzi L. , Vitale I. , Aaronson SA , Abrams JM , Adam D. , Agostinis P. , Alnemri ES , Altucci L. , Amelio I. , Andrews DW , Annicchiarico-Petruzzelli M. , Antonov AV , Arama E. , Baehrecke EH , Barlev NA , Bazan NG , Bernassola F. , Bertrand MJM , Bianchi K. , Blagosklonny MV , Blomgren K. , Borner C. , Boya P. , Brenner C. , Campanella M. , Candi E. , Carmona-Gutierrez D. , Cecconi F. , Chan FK , Chandel NS , Cheng EH , Chipuk JE , Cidlowski JA , Ciechanover A. , Cohen GM , Conrad M. , Cubillos-Ruiz JR , Czabotar PE , D'Angiolella V. , Dawson TM , Dawson VL , De Laurenzi V. , De Maria R. , Debatin KM , DeBerardinis RJ , Deshmukh M. , Di Daniele N. , Di Virgilio F. , Dixit VM , Dixon SJ , Duckett CS , Dynlacht BD , El-Deiry WS , Elrod JW , Fimia GM , Fulda S. , GarcΓ­a-SΓ‘ez AJ , Garg AD , Garrido C. , Gavathiotis E. , Golstein P. , Gottlieb E. , Green DR , Greene LA , Gronemeyer H. , Gross A. , Hajnoczky G. , Hardwick JM , Harris IS , Hengartner MO , Hetz C. , Ichijo H. , JÀÀttelΓ€ M. , Joseph B. , Jost PJ , Juin PP , Kaiser WJ , Karin M. , Kaufmann T. , Kepp O. , Kimchi A. , Kitsis RN , Klionsky DJ , Knight RA , Kumar S. , Lee SW , Lemasters JJ , Levine B. , Linkermann A. , Lipton SA , Lockshin RA , LΓ³pez-OtΓ­n C. , Lowe SW , Luedde T. , Lugli E. , MacFarlane M. , Madeo F. , Malewicz M. , Malorni W. , Manic G. , Marine JC , Martin SJ , Martinou JC , Medema JP , Mehlen P. , Meier P. , Melino S. , Miao EA , Molkentin JD , Moll UM , MuΓ±oz-Pinedo C. , Nagata S. , NuΓ±ez G. , Oberst A. , Oren M. , Overholtzer M. , Pagano M. , Panaretakis T. , Pasparakis M. , Penninger JM , Pereira DM , Pervaiz S. , Peter ME , Piacentini M. , Pinton P. , Prehn JHM , Puthalakath H. , Rabinovich GA , Rehm M. , Rizzuto R. , Rodrigues CMP , Rubinsztein DC , Rudel T. , Ryan KM , Sayan E. , Scorrano L. , Shao F. , Shi Y. , Silke J. , Simon HU , Sistigu A. , Stockwell BR , Strasser A. , Szabadkai G. , Tait SWG , Tang D. , Tavernarakis N. , Thorburn A. , Tsujimoto Y. , Turk B. , Vanden Berghe T. , Vandenabeele P. , Vander Heiden MG , Villunger A. , Virgin HW , Vousden KH , Vucic D. , Wagner EF , Walczak H. , Wallach D. , Wang Y. , Wells JA , Wood W. , Yuan J. , Zakeri Z. , Zhivotovsky B. , Zitvogel L. , Melino G. , Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. (Π°Π½Π³Π».) // Cell Death And Differentiation. β€” 2018. β€” March ( vol. 25 , no. 3 ). β€” P. 486β€”541 . β€” DOI : 10.1038/s41418-017-0012-4 . β€” PMID 29362479 .
  5. ↑ Mizushima N. , Yoshimori T. , Ohsumi Y. The role of Atg proteins in autophagosome formation. (Π°Π½Π³Π».) // Annual Review Of Cell And Developmental Biology. - 2011. - Vol. 27 . β€” P. 107β€”132 . β€” DOI : 10.1146/annurev-cellbio-092910-154005 . β€” PMID 21801009 .
  6. ↑ Xie Z. , Klionsky DJ Autophagosome formation: core machinery and adaptations. (Π°Π½Π³Π».) // Nature Cell Biology. β€” 2007. β€” October ( vol. 9 , no. 10 ). β€” P. 1102β€”1109 . β€” DOI : 10.1038/ncb1007-1102 . β€” PMID 17909521 .
  7. ↑ Dixon SJ , Stockwell BR The role of iron and reactive oxygen species in cell death. (Π°Π½Π³Π».) // Nature chemical biology. - 2014 .-- Vol. 10, no. 1 . β€” P. 9β€”17. β€” DOI : 10.1038/nchembio.1416 . β€” PMID 24346035 .
  8. ↑ Wiens M. Grundlegende Mechanismen der Apoptose in den einfachsten Invertebraten, den Porifera (Π½Π΅ΠΌ.) // Zeitschrift f r Gerontologie und Geriatrie. β€” 2004. β€” Juni ( Bd. 37 , Nr. 3 ). β€” ISSN 0948-6704 . β€” DOI : 10.1007/s00391-004-0230-5 .
  9. ↑ Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson. Campbell Biology. β€” Pearson, 2014. β€” Π‘. 228. β€” ISBN 978-0-321-77565-8 .
  10. ↑ Doe CQ , Goodman CS Early events in insect neurogenesis. I. Development and segmental differences in the pattern of neuronal precursor cells. (Π°Π½Π³Π».) // Developmental Biology. β€” 1985. β€” September ( vol. 111 , no. 1 ). β€” P. 193β€”205 . β€” PMID 4029506 .
  11. ↑ Giebultowicz Jadwiga M. , Truman James W. Sexual differentiation in the terminal ganglion of the mothManduca sexta: Role of sex-specific neuronal death (Π°Π½Π³Π».) // The Journal of Comparative Neurology. β€” 1984. β€” 10 June ( vol. 226 , no. 1 ). β€” P. 87β€”95 . β€” ISSN 0021-9967 . β€” DOI : 10.1002/cne.902260107 .
  12. ↑ Vernooy SY , Copeland J. , Ghaboosi N. , Griffin EE , Yoo SJ , Hay BA Cell death regulation in Drosophila: conservation of mechanism and unique insights. (Π°Π½Π³Π».) // The Journal Of Cell Biology. β€” 2000. β€” 24 July ( vol. 150 , no. 2 ). - P. 69-76 . β€” PMID 10908589 .
  13. ↑ Levraud JP , Adam M. , Luciani MF , de Chastellier C. , Blanton RL , Golstein P. Dictyostelium cell death: early emergence and demise of highly polarized paddle cells. (Π°Π½Π³Π».) // The Journal Of Cell Biology. β€” 2003. β€” 31 March ( vol. 160 , no. 7 ). β€” P. 1105β€”1114 . β€” DOI : 10.1083/jcb.200212104 . β€” PMID 12654899 .
  14. ↑ Roisin-Bouffay C. , Luciani MF , Klein G. , Levraud JP , Adam M. , Golstein P. Developmental cell death in dictyostelium does not require paracaspase. (Π°Π½Π³Π».) // The Journal Of Biological Chemistry. β€” 2004. β€” 19 March ( vol. 279 , no. 12 ). β€” P. 11489β€”11494 . β€” DOI : 10.1074/jbc.M312741200 . β€” PMID 14681218 .
  15. ↑ Π―Ρ€ΠΈΠ»ΠΈΠ½ А. А. Апоптоз ΠΈ Π΅Π³ΠΎ Ρ€ΠΎΠ»ΡŒ Π² цСлостном ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ΅ // Π“Π»Π°ΡƒΠΊΠΎΠΌΠ°. β€” 2003. β€” Π’Ρ‹ΠΏ. 2 . β€” Π‘. 46β€”54 .
  16. ↑ Thomas SG , Franklin-Tong VE Self-incompatibility triggers programmed cell death in Papaver pollen. (Π°Π½Π³Π».) // Nature. β€” 2004. β€” 20 May ( vol. 429 , no. 6989 ). β€” P. 305β€”309 . β€” DOI : 10.1038/nature02540 . β€” PMID 15152254 .
  17. ↑ Lockshin Richard A. , Williams Carroll M. Programmed cell deathβ€”II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths (Π°Π½Π³Π».) // Journal of Insect Physiology. β€” 1964. β€” August ( vol. 10 , no. 4 ). β€” P. 643β€”649 . β€” ISSN 0022-1910 . β€” DOI : 10.1016/0022-1910(64)90034-4 .
  18. ↑ Vaux DL , Cory S. , Adams JM Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. (Eng.) // Nature. - 1988 .-- 29 September ( vol. 335 , no. 6189 ). - P. 440-442 . - DOI : 10.1038 / 335440a0 . - PMID 3262202 .
  19. ↑ The Nobel Prize in Physiology or Medicine 2002 (Π½Π΅ΠΎΠΏΡ€.) . The Nobel Foundation (2002). Date of treatment June 21, 2009.
  20. ↑ The Nobel Prize in Physiology or Medicine 2016 (Π½Π΅ΠΎΠΏΡ€.) . The Nobel Foundation (October 3, 2016). Date of treatment October 3, 2016.
Source - https://ru.wikipedia.org/w/index.php?title= Programmable cell death &oldid = 98577422


More articles:

  • Sadovaya (Sandovsky District)
  • Epicopeia
  • Tsepilov, Yuri
  • Russia at the 2004 Summer Paralympic Games
  • Switzerland Stamp Referendum (1917)
  • Aubepin, Guillaume L '- Wikipedia
  • Overyanovskoe Lake
  • Wheel (algebra)
  • Tajikistan at the 2018 Summer Asian Games
  • Rohrbach Solution

All articles

Clever Geek | 2019