Clever Geek Handbook
📜 ⬆️ ⬇️

Van Aubel's Triangle Theorem

The Van Obel triangle theorem is a classical affine geometry theorem.

Wording

 
The case when all three points lie on the sides of the triangle, and not on their extensions.
 
The case when two points lie on the extensions of the sides.

If directAP {\ displaystyle AP}   ,BP {\ displaystyle BP}   ,CP {\ displaystyle CP}   straight lines cross respectivelyBC {\ displaystyle BC}   ,CA {\ displaystyle CA}   ,AB {\ displaystyle AB}   containing sides of a triangleABC {\ displaystyle ABC}   , respectively, at pointsAone {\ displaystyle A_ {1}}   ,Bone {\ displaystyle B_ {1}}   ,Cone {\ displaystyle C_ {1}}   , then there is an equality of relations of directed segments :

AConeConeB+ABoneBoneC=APPAone{\ displaystyle {\ frac {AC_ {1}} {C_ {1} B}} + {\ frac {AB_ {1}} {B_ {1} C}} = {\ frac {AP} {PA_ {1} }}}   .

Remarks

  • If the segments are co-directional (equally directed), then the upper signs of the directed segments can be removed, and we obtain a scalar version of the Van Aubel theorem:
    AConeConeB+ABoneBoneC=APPAone{\ displaystyle {\ frac {AC_ {1}} {C_ {1} B}} + {\ frac {AB_ {1}} {B_ {1} C}} = {\ frac {AP} {PA_ {1} }}}   .
Source - https://ru.wikipedia.org/w/index.php?title= Van_Obel_Obole_Tangle triangle theorem&oldid = 95526804


More articles:

  • Frostpunk
  • Marc Marcius Ralla
  • Batman (game, 1986)
  • Posada, Shose Maria
  • Dubrovnik
  • BEACH-23
  • Sunyaev, Ali Rashidovich
  • Revyakin, Dmitry Vladimirovich
  • Honored Doctor of the Republic of Mari El
  • Denisov, Vasily Yakovlevich

All articles

Clever Geek | 2019