Clever Geek Handbook
📜 ⬆️ ⬇️

Hyperbolic spiral

Hyperbolic spiral for a = 2

A hyperbolic spiral is a flat transcendental curve . The hyperbolic spiral equation in the polar coordinate system is the inverse of the Archimedean spiral equation and is written as follows:

ρϕ=a{\ displaystyle \ rho \ phi = a} {\ displaystyle \ rho \ phi = a}

The equation of the hyperbolic spiral in Cartesian coordinates:

x=ρcos⁡ϕ,y=ρsin⁡ϕ,{\ displaystyle x = \ rho \ cos \ phi, \ qquad y = \ rho \ sin \ phi,} {\ displaystyle x = \ rho \ cos \ phi, \ qquad y = \ rho \ sin \ phi,}

Parametric notation of the equation:

x=acos⁡tt,y=asin⁡tt,{\ displaystyle x = a {\ cos t \ over t}, \ qquad y = a {\ sin t \ over t},} {\ displaystyle x = a {\ cos t \ over t}, \ qquad y = a {\ sin t \ over t},}

The spiral has the asymptote y = a : for t, the ordinate tends to zero, tends to a , and the abscissa goes to infinity:

limt→0x=alimt→0cos⁡tt=∞,{\ displaystyle \ lim _ {t \ to 0} x = a \ lim _ {t \ to 0} {\ cos t \ over t} = \ infty,} {\ displaystyle \ lim _ {t \ to 0} x = a \ lim _ {t \ to 0} {\ cos t \ over t} = \ infty,}
limt→0y=alimt→0sin⁡tt=a⋅one=a.{\ displaystyle \ lim _ {t \ to 0} y = a \ lim _ {t \ to 0} {\ sin t \ over t} = a \ cdot 1 = a.} {\ displaystyle \ lim _ {t \ to 0} y = a \ lim _ {t \ to 0} {\ sin t \ over t} = a \ cdot 1 = a.}



Source - https://ru.wikipedia.org/w/index.php?title= Hyperbolic_helix&oldid = 100284849


More articles:

  • Evandro Felipe de Lima Costa
  • Sukhodolov, Alexander Petrovich
  • Zavalny cemetery
  • Jayavijaya (ridge)
  • Burlyksky
  • Shaimiev, Radik Mintimerovich
  • Luzhki (Orenburg region)
  • Shanina, Maria Alexandrovna
  • Corowai (language)
  • Land reclamation (passing station)

All articles

Clever Geek | 2019