Clever Geek Handbook
📜 ⬆️ ⬇️

Jordan's theorem on finite linear groups

Jordan's theorem on a linear linear group theorem guarantees the existence of a large commutative subgroup in any finite linear group .

In its original form, proved by Camille Jordan , later improved several times.

Wording

For any dimensionn {\ displaystyle n}   , there is a numberf(n) {\ displaystyle f (n)}   such that any finite subgroupG {\ displaystyle G}   groupsGL(n,C) {\ displaystyle \ mathrm {GL} (n, \ mathbb {C})}   invertible matrices with complex components contains a normal commutative subgroupH {\ displaystyle H}   with index[G:H]≤f(n) {\ displaystyle [G: H] \ leq f (n)}  

Variations and generalizations

  • Schur proved a more general result for periodic groups , while
    f(n) = ( 8 n + one ) 2 n 2 - ( 8 n - one ) 2 n 2{\ displaystyle f (n) = \ left ({\ sqrt {8n}} + 1 \ right) ^ {2n ^ {2}} - \ left ({\ sqrt {8n}} - 1 \ right) ^ {2n ^ {2}}}  
  • For finite groups, proved a more accurate estimate:
    f(n)=n!⋅12n(π(n+one)+one){\ displaystyle f (n) = n! \ cdot 12 ^ {n (\ pi (n + 1) +1)}}  
Whereπ(n) {\ displaystyle \ pi (n)}   there is a distribution function of primes .
  • This rating was improved by , who replaced “12” with “6”.
  • Subsequently, Michael Collins, using the classification of finite simple groups , showed thatf(n)=(n+one)! {\ displaystyle f (n) = (n + 1)!}   atn≥71 {\ displaystyle n \ geq 71}   , and gave almost complete descriptions of behaviorf(n) {\ displaystyle f (n)}   at smalln {\ displaystyle n}   .
Source - https://ru.wikipedia.org/w/index.php?title=Jordan_ theorem_on_finite_linear_groups&oldid = 94325322


More articles:

  • Burnt Wings (film)
  • Parzayerschpitse
  • Podgornoye (Lipetsk District)
  • Novosibirsk Regional Dermatovenerologic Dispensary
  • Kefken
  • Campos Salas, Dagoberto
  • Lynch, Evanna
  • Heat in Japan (2018)
  • Real Espana
  • Women's World Ice Hockey Championships 2018

All articles

Clever Geek | 2019