Clever Geek Handbook
📜 ⬆️ ⬇️

Grothendieck splitting theorem

Grothendieck's splitting theorem gives a classification of holomorphic vector bundles over a complex projective line . Namely, she claims that every holomorphic vector bundle overCPone {\ displaystyle \ mathbb {C} \ mathrm {P} ^ {1}} {\ displaystyle \ mathbb {C} \ mathrm {P} ^ {1}} is the direct sum of holomorphic 1-dimensional bundles .

Content

History

The theorem is named after Alexander Grothendieck , who proved it in 1957. [1] It is equivalent to the theorem previously proved by George Birkhoff in 1913, [2] but was already known in 1908 to Josip Plemel [3] and in 1905 to David Hilbert . [four]

Wording

Grothendieck wording

Every holomorphic vector bundleE {\ displaystyle {\ mathcal {E}}}   aboveCPone {\ displaystyle \ mathbb {C} \ mathrm {P} ^ {1}}   holomorphically isomorphic to the direct sum of line bundles:

E≅O(aone)⊕⋯⊕O(an),{\ displaystyle {\ mathcal {E}} \ cong {\ mathcal {O}} (a_ {1}) \ oplus \ cdots \ oplus {\ mathcal {O}} (a_ {n}),}  

WhereO(a) {\ displaystyle {\ mathcal {O}} (a)}   denotes a bundle with class Cherna {\ displaystyle a}   . Moreover, this representation is unique up to a permutation of the terms.

Birkhoff wording

Invertible matrixM {\ displaystyle M}   , each component of which is a Laurent polynomial fromz {\ displaystyle z}   represented as a work

M=M+M0M-{\ displaystyle M = M ^ {+} M ^ {0} M ^ {-}}   ,

where is the matrixM+ {\ displaystyle M ^ {+}}   - polynomial fromz {\ displaystyle z}   ,M0 {\ displaystyle M ^ {0}}   Is the diagonal matrix, and the matrixM- {\ displaystyle M ^ {-}}   - polynomial fromonez {\ displaystyle {\ tfrac {1} {z}}}   .

Applications

  • Grothendieck's splitting theorem is used in the proof of Mikalef and Moore 's sphere theorem for positive complexified curvature in isotropic directions.

Variations and generalizations

  • The same result holds for algebraic vector bundles overPkone {\ displaystyle \ mathbb {P} _ {k} ^ {1}}   for any fieldk {\ displaystyle k}   . [five]

Notes

  1. ↑ Grothendieck, Alexander (1957), " Sur la classification des fibrés holomorphes sur la sphère de Riemann ", American Journal of Mathematics Vol . 79: 121 • 138 , DOI 10.2307 / 2372388   .
  2. ↑ Birkhoff, George David (1909), " Singular points of ordinary linear differential equations ", Transactions of the American Mathematical Society T. 10 (4): 436–470, ISSN 0002-9947 , DOI 10.2307 / 1988594  
  3. ↑ Plemelj, J. Riemannsche Funktionenscharen mit gegebener Monodromiegruppe. Monatsh. Math. Phys. 19 (1908), no. 1, 211-245.
  4. ↑ Hilbert D. Grundzüge einer allgemeinen theorie der linearen integralgleichungen. vierte mitteilung. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. 1906: 157-228.
  5. ↑ Hazewinkel, Michiel & Martin, Clyde F. (1982), " A short elementary proof of Grothendieck's theorem on algebraic vectorbundles over the projective line ", Journal of Pure and Applied Algebra T. 25 (2): 207–211 , DOI 10.1016 / 0022-4049 (82) 90037-8  

Literature

  • Okonek, C .; Schneider, M. & Spindler, H. (1980), Vector bundles on complex projective spaces , Progress in Mathematics, Birkhäuser   .
Source - https://ru.wikipedia.org/w/index.php?title=Grothendic_of_ Splitting Theorem&oldid = 95470899


More articles:

  • Monument to Alexey Kostyakov
  • Ischenko, Eugene Stanislavovich
  • X BRICS Summit
  • Klyuchevka (Sosnovsky district)
  • Bukharino (Chelyabinsk Region)
  • Queen Rock Montreal (video)
  • Zhylandy (tributary of the Kara-Kengir)
  • Neivamyrmex californicus
  • Techno
  • Yuriev (Kiev principality)

All articles

Clever Geek | 2019