Clever Geek Handbook
📜 ⬆️ ⬇️

D'Alembert equation

The D'Alembert equation is a differential equation of the form

y=xφ(y′)+f(y′),{\ displaystyle y = x \ varphi (y ') + f (y'),} {\ displaystyle y = x \ varphi (y ') + f (y'),}

Whereφ {\ displaystyle \ varphi} \ varphi andf {\ displaystyle f} f - functions. It was first studied by J. D'Alembert (J. D'Alembert, 1748). Also known as the Lagrange equations , a special case forφ(y′)≡y′ {\ displaystyle \ varphi (y ') \ equiv y'} {\ displaystyle \ varphi (y ') \ equiv y'} called the Claireau equation [1] .

Content

Solution

The integration of differential equations of this type is carried out in a parametric form , using the parameter

y′=p.{\ displaystyle y '= p.}  

Given this substitution, the original equation takes the form

y=xφ(p)+f(p).{\ displaystyle y = x \ varphi (p) + f (p).}  

Differentiation by x gives:

p=φ(p)+(xφ′(p)+f′(p))dpdx{\ displaystyle p = \ varphi (p) + \ left (x \ varphi '(p) + f' (p) \ right) {\ frac {dp} {dx}}}  

or

p-φ(p)=(xφ′(p)+f′(p))dpdx.{\ displaystyle p- \ varphi (p) = \ left (x \ varphi '(p) + f' (p) \ right) {\ frac {dp} {dx}}.}  

Special Solutions

One solution to the last equation is any function whose derivative is constanty′=p=p0 {\ displaystyle y '= p = p_ {0}}   satisfying the algebraic equation

p0-φ(p0)=0,{\ displaystyle p_ {0} - \ varphi (p_ {0}) = 0,}  

since for constantp0 {\ displaystyle p_ {0}}  

dpdx≡0.{\ displaystyle {\ frac {dp} {dx}} \ equiv 0.}  

If ay′=p0 {\ displaystyle y '= p_ {0}}   theny=p0x+C0 {\ displaystyle y = p_ {0} x + C_ {0}}   , the constant C should be found by substitution in the original equation:

p0x+C0=xφ(p0)+f(p0),{\ displaystyle p_ {0} x + C_ {0} = x \ varphi (p_ {0}) + f (p_ {0}),}  

since in this casep0=φ(p0) {\ displaystyle p_ {0} = \ varphi (p_ {0})}   then

C0=f(p0){\ displaystyle C_ {0} = f (p_ {0})}   .

Finally, we can write:

y=xφ(p0)+f(p0){\ displaystyle y = x \ varphi (p_ {0}) + f (p_ {0})}   .

If such a solution cannot be obtained from the general, then it is called special .

General decision

We consider the inverse function kp=y′ {\ displaystyle p = y '}   , then, using the theorem on the derivative of the inverse function, we can write:

dxdp-xφ(p)p-φ(p)=f(p)p-φ(p){\ displaystyle {\ frac {dx} {dp}} - x {\ frac {\ varphi (p)} {p- \ varphi (p)}} = {\ frac {f (p)} {p- \ varphi (p)}}}   .

This equation is a linear differential equation of the first order , solving which, we obtain the expression for x as a function of p :

x=w(p,C).{\ displaystyle x = w (p, C).}  

Thus, we obtain a solution to the initial differential equation in a parametric form:

{y=xφ(p)+f(p)x=w(p,C){\ displaystyle {\ begin {cases} y = x \ varphi (p) + f (p) \\ x = w (p, C) \ end {cases}}}   .

Eliminating the variable p from this system, we obtain the general solution in the form

Φ(x,y,C)=0{\ displaystyle \ Phi (x, y, C) = 0}   .


Notes

  1. ↑ Piskunov H. S. Differential and integral calculus for technical colleges, vol. 2 .: Textbook for technical colleges .. - 13th ed .. - M: Nauka, Main Edition of Physics and Mathematics, 1985. - P. 46- 48. - 560 s.
Source - https://ru.wikipedia.org/w/index.php?title=D'Alembert Equation&oldid = 78311658


More articles:

  • Karmysheva, Nunania Khalilovna
  • FIFA World Cup 2002 (qualifying tournament, UEFA group 4)
  • FIFA World Cup 2006 (qualifying tournament, UEFA group 8)
  • Duncan, Donald (businessman)
  • Maslyakova, Galina Nikiforovna
  • Veliyev, Iskender Mahmud oglu
  • Degree of Risk (Film, 1995)
  • Schilling, Nikolai Gustavovich
  • Ignacio Currais
  • 2018 European Curling Championship

All articles

Clever Geek | 2019