Clever Geek Handbook
📜 ⬆️ ⬇️

Orthogonal group

Orthogonal group - a group of all linear transformationsn {\ displaystyle n} n -dimensional vector spaceV {\ displaystyle V} V over the fieldk {\ displaystyle k} k preserving a fixed non-degenerate quadratic formQ {\ displaystyle Q} Q onV {\ displaystyle V} V (i.e. such linear transformationsφ {\ displaystyle \ varphi} \ varphi , whatQ(φ(v))=Q(v) {\ displaystyle Q (\ varphi (v)) = Q (v)} Q (\ varphi (v)) = Q (v) for anyonev∈V {\ displaystyle v \ in V} v \ in V )

Content

Symbols and related definitions

  • Elements of an orthogonal group are called orthogonal (with respect toQ {\ displaystyle Q}   ) transformationsV {\ displaystyle V}   as well as automorphisms of the formQ {\ displaystyle Q}   (more precisely, by automorphisms of spaceV {\ displaystyle V}   regarding formQ {\ displaystyle Q}   )
  • DesignatedOn {\ displaystyle O_ {n}}   ,On(k) {\ displaystyle O_ {n} (k)}   ,On(Q) {\ displaystyle O_ {n} (Q)}   and so on. When the quadratic form is not indicated explicitly, it means the form specified by the sum of the squares of the coordinates, that is, expressed by the identity matrix .
  • Above the field of real numbers, an orthogonal group of an indefinite form with a signature (l {\ displaystyle l}   plusesm {\ displaystyle m}   cons) wheren=l+m {\ displaystyle n = l + m}   is denoted byO(l,m) {\ displaystyle O (l, m)}   see e.g. O (1,3) .

Properties

  • If the characteristic of the main field is more than two , then withQ {\ displaystyle Q}   connected non-degenerate symmetric bilinear formF {\ displaystyle F}   onV {\ displaystyle V}   defined by the formula
    F(u,v)=Q(u+v)-Q(u)-Q(v).{\ displaystyle F (u, \; v) = Q (u + v) -Q (u) -Q (v).}  
Then the orthogonal group consists precisely of those linear transformations of the spaceV {\ displaystyle V}   that saveF {\ displaystyle F}   , and is denoted byOn(k,F) {\ displaystyle O_ {n} (k, \; F)}   or (when it is clear about which fieldk {\ displaystyle k}   and formF {\ displaystyle F}   in question) just throughOn {\ displaystyle O_ {n}}   .
  • If aB {\ displaystyle B}   - shape matrixF {\ displaystyle F}   in a certain basis of spaceV {\ displaystyle V}   , then the orthogonal group can be identified with the group of all such matricesA {\ displaystyle A}   with coefficients ink {\ displaystyle k}   , what
    ATBA=B.{\ displaystyle A ^ {T} BA = B.}  
    In particular, if the basis is such thatQ {\ displaystyle Q}   is the sum of the squares of the coordinates (i.e., the matrixB {\ displaystyle B}   unit), then such matricesA {\ displaystyle A}   called orthogonal .
  • Over the field of real numbers , groupOn(R,V) {\ displaystyle O_ {n} ({\ mathbb {R}}, \; V)}   compact if and only if the formQ {\ displaystyle Q}   sign-defined .
    • In this case, any element ofOn(R) {\ displaystyle O_ {n} ({\ mathbb {R}})   , for a suitable basias, is represented as a block-diagonal matrix
      [Rone⋱Rk00±one⋱±one]{\ displaystyle {\ begin {bmatrix} {\ begin {matrix} R_ {1} && \\ & \ ddots & \\ && R_ {k} \ end {matrix}} & 0 \\ 0 & {\ begin {matrix} \ pm 1 && \\ & \ ddots & \\ && \ pm 1 \ end {matrix}} \\\ end {bmatrix}}}  
where R 1 , ..., R k - 2x2 matrix of turns; Euler's rotation theorem is a special case of this statement.

Other groups

The orthogonal group is a subgroup of the complete linear group GL (n {\ displaystyle n}   ) Elements of an orthogonal group whose determinant is 1 (this property does not depend on the basis ) form a subgroup - a special orthogonal groupSO(n,Q) {\ displaystyle SO (n, Q)}   denoted in the same way as the orthogonal group, but with the addition of the letter "S".SO(n,Q) {\ displaystyle SO (n, Q)}   , by construction, is also a subgroup of a special linear groupSL(n) {\ displaystyle SL (n)}   .

See also

  • SO (8)

Links

  • Orthogonal group
Source - https://ru.wikipedia.org/w/index.php?title=Orthogonal_group&oldid=99984696


More articles:

  • Navruzbekov, Azizbek
  • UEFA Europa League Final 2018
  • Marguzor
  • Lopatino (Bogorodsky district)
  • Ilona Siladji
  • Fedosov, Nikolay Iosifovich
  • Guceno, Alphon
  • Russell Hodgkinson
  • .pl
  • Cheyenne

All articles

Clever Geek | 2019