Clever Geek Handbook
📜 ⬆️ ⬇️

Triple work of Jacobi

The triple product of Jacobi is a mathematical identity:

∏m=one∞(one-x2m)(one+x2m-oney2)(one+x2m-oney2)=∑n=-∞∞xn2y2n,{\ displaystyle \ prod _ {m = 1} ^ {\ infty} \ left (1-x ^ {2m} \ right) \ left (1 + x ^ {2m-1} y ^ {2} \ right) \ left (1 + {\ frac {x ^ {2m-1}} {y ^ {2}}} \ right) = \ sum _ {n = - \ infty} ^ {\ infty} x ^ {n ^ {2 }} y ^ {2n},} {\ displaystyle \ prod _ {m = 1} ^ {\ infty} \ left (1-x ^ {2m} \ right) \ left (1 + x ^ {2m-1} y ^ {2} \ right) \ left (1 + {\ frac {x ^ {2m-1}} {y ^ {2}}} \ right) = \ sum _ {n = - \ infty} ^ {\ infty} x ^ {n ^ {2 }} y ^ {2n},}

for complex numbers x and y with|x|<one {\ displaystyle | x | <1} {\ displaystyle | x | <1} andy≠0 {\ displaystyle y \ neq 0} {\ displaystyle y \ neq 0} .

Identity was proposed by Carl Gustav Jacob Jacobi [1] in Fundamenta Nova Theoriae Functionum Ellipticarum (New Principles in the Theory of Elliptic Functions).

The Jacobi triple product is for the affine roots of a system of type A 1 and is the for the corresponding affine .

Content

Properties

Jacobi's proof is based on Euler , which itself is a common case of the Jacobi triple product identity.

Let bex=qq {\ displaystyle x = q {\ sqrt {q}}}   andy2=-q {\ displaystyle y ^ {2} = - {\ sqrt {q}}}   . Then we have

ϕ(q)=∏m=one∞(one-qm)=∑n=-∞∞(-one)nq3n2-n2.{\ displaystyle \ phi (q) = \ prod _ {m = 1} ^ {\ infty} \ left (1-q ^ {m} \ right) = \ sum _ {n = - \ infty} ^ {\ infty } (- 1) ^ {n} q ^ {\ frac {3n ^ {2} -n} {2}}.}  

The Jacobi triple product also allows us to rewrite the Jacobi theta function as an infinite product:

Let bex=eiπτ {\ displaystyle x = e ^ {i \ pi \ tau}}   andy=eiπz. {\ displaystyle y = e ^ {i \ pi z}.}  

Then the Jacobi theta function

ϑ(z;τ)=∑n=-∞∞eπin2τ+2πinz{\ displaystyle \ vartheta (z; \ tau) = \ sum _ {n = - \ infty} ^ {\ infty} e ^ {\ pi {\ rm {i}} n ^ {2} \ tau +2 \ pi {\ rm {i}} nz}}  

can be rewritten as

∑n=-∞∞y2nxn2.{\ displaystyle \ sum _ {n = - \ infty} ^ {\ infty} y ^ {2n} x ^ {n ^ {2}}.}  

Using the identity of the Jacobi triple product, we can write the theta function as the product

ϑ(z;τ)=∏m=one∞(one-e2mπiτ)[one+e(2m-one)πiτ+2πiz][one+e(2m-one)πiτ-2πiz].{\ displaystyle \ vartheta (z; \ tau) = \ prod _ {m = 1} ^ {\ infty} \ left (1-e ^ {2m \ pi {\ rm {i}} \ tau} \ right) \ left [1 + e ^ {(2m-1) \ pi {\ rm {i}} \ tau +2 \ pi {\ rm {i}} z} \ right] \ left [1 + e ^ {(2m- 1) \ pi {\ rm {i}} \ tau -2 \ pi {\ rm {i}} z} \ right].}  

There are many different notations used to express the Jacobi triple product. It takes a short form, if expressed in terms of q- symbols of Pohhammer :

∑n=-∞∞qn(n+one)2zn=(q;q)∞(-onez;q)∞(-zq;q)∞,{\ displaystyle \ sum _ {n = - \ infty} ^ {\ infty} q ^ {\ frac {n (n + 1)} {2}} z ^ {n} = (q; q) _ {\ infty } \; \ left (- {\ tfrac {1} {z}}; q \ right) _ {\ infty} \; (- zq; q) _ {\ infty},}  

Where(a;q)∞ {\ displaystyle (a; q) _ {\ infty}}   Is the infinite q- symbol of Pohhammer.

The formula takes on a particularly elegant appearance when expressed in terms of the theta function of Ramanujan . For|ab|<one {\ displaystyle | ab | <1}   it can be rewritten as

∑n=-∞∞an(n+one)2bn(n-one)2=(-a;ab)∞(-b;ab)∞(ab;ab)∞.{\ displaystyle \ sum _ {n = - \ infty} ^ {\ infty} a ^ {\ frac {n (n + 1)} {2}} \; b ^ {\ frac {n (n-1)} {2}} = (- a; ab) _ {\ infty} \; (- b; ab) _ {\ infty} \; (ab; ab) _ {\ infty}.}  

Proof

For an analytical case, see the book of the Apostle [2] , the first edition of which was published in 1976. See also the link below for evidence stimulated by physicists.

Notes

  1. ↑ Jacobi, 1829 .
  2. ↑ Apostol, 1976 , p. theorem 14.6.

Literature

  • Andrews GE A simple proof of Jacobi's triple product identity // Proc. Amer. Math. Soc .. - American Mathematical Society , 1965. - T. 16 . - ISSN 0002-9939 .
  • Tom M. Apostol. chapter 14, theorem 14.6 of // Introduction to analytic number theory. - New York-Heidelberg: Springer-Verlag, 1976. - (Undergraduate Texts in Mathematics). - ISBN 978-0-387-90163-3 .
  • Peter J. Cameron. Combinatorics: Topics, Techniques, Algorithms . - Cambridge University Press , 1994. - ISBN 0-521-45761-0 .
  • Jacobi CGJ Fundamenta nova theoriae functionum ellipticarum . - Reprinted by Cambridge University Press 2012, language: Latin. - Königsberg: Borntraeger, 1829. - ISBN 978-1-108-05200-9 .
  • Carlitz L. A note on the Jacobi theta formula // Bull. Amer. Math. Soc .. - American Mathematical Society , 1962. - T. 68 , No. 6 . - S. 591-592. .
  • Wright EM An Enumerative Proof of An Identity of Jacobi // Journl of the London Mathematical Society. - London Mathematical Society , 1965. - T. s1-40 , no. 1 . - S. 55-57 .

Links

  • A brief combinatorial proof of identity, stimulated by physicists.
Source - https://ru.wikipedia.org/w/index.php?title= Jacobi Triple_Production_&oldid = 92658073


More articles:

  • Koschek, Josh
  • Salakhitdinov, Mahmud Salahitdinovich
  • Kazakhstan Futsal Championship 2017/2018
  • Governor of the Amur Region
  • New Shagirt
  • Weightlifting World Cup 2018
  • Kolyma (Magadan region)
  • Genchev, Hristo Velkov
  • Triennale Setouti
  • Khibiny (Murmansk region)

All articles

Clever Geek | 2019