Clever Geek Handbook
📜 ⬆️ ⬇️

Zhordanov totiyent

Let bek {\ displaystyle k} k Is a natural number . Jordan totiant or Jordan Function [1]Jk(n) {\ displaystyle J_ {k} (n)} {\ displaystyle J_ {k} (n)} positive integern {\ displaystyle n} n Is a numberk {\ displaystyle k} k tuples of positive integers less than or equal ton {\ displaystyle n} n forming(k+one) {\ displaystyle (k + 1)} (k + 1) tuple whose greatest common divisor is mutually simple withn {\ displaystyle n} n . The function is a generalization of the Euler function , which is equal toJone {\ displaystyle J_ {1}} J_ {1} . The function bears the name of the French mathematician Jordan .

Content

Definition

The Jordan function is multiplicative and can be calculated by the formula

Jk(n)=nk∏p|n(one-onepk){\ displaystyle J_ {k} (n) = n ^ {k} \ prod _ {p | n} \ left (1 - {\ frac {1} {p ^ {k}}} right) \,}   wherep {\ displaystyle p}   runs through simple divisorsn {\ displaystyle n}   .

Properties

  • ∑d|nJk(d)=nk.{\ displaystyle \ sum _ {d | n} J_ {k} (d) = n ^ {k}. \,}   ,

what can be written in the language of Dirichlet bundles as [2]

Jk(n)⋆one=nk{\ displaystyle J_ {k} (n) \ star 1 = n ^ {k} \,}   ,

and through Möbius appeals as

Jk(n)=μ(n)⋆nk{\ displaystyle J_ {k} (n) = \ mu (n) \ star n ^ {k}}   .

Since the generating Dirichlet functionμ {\ displaystyle \ mu}   is equal toone/ζ(s) {\ displaystyle 1 / \ zeta (s)}   , and the generating Dirichlet functionnk {\ displaystyle n ^ {k}}   is equal toζ(s-k) {\ displaystyle \ zeta (sk)}   row forJk {\ displaystyle J_ {k}}   turns into

∑n≥oneJk(n)ns=ζ(s-k)ζ(s){\ displaystyle \ sum _ {n \ geq 1} {\ frac {J_ {k} (n)} {n ^ {s}}} = {\ frac {\ zeta (sk)} {\ zeta (s)} }}   .
  • forJk(n) {\ displaystyle J_ {k} (n)}   is equal to
nkζ(k+one){\ displaystyle {\ frac {n ^ {k}} {\ zeta (k + 1)}}}   .
  • Dedekind's psi function is
ψ(n)=J2(n)Jone(n){\ displaystyle \ psi (n) = {\ frac {J_ {2} (n)} {J_ {1} (n)}}}   ,

and in the study of the definition (we note that each factor in the product of primes is a circular polynomialp-k {\ displaystyle p _ {- k}}   ), it can be shown that arithmetic functions defined asJk(n)Jone(n) {\ displaystyle {\ frac {J_ {k} (n)} {J_ {1} (n)}}}   orJ2k(n)Jk(n) {\ displaystyle {\ frac {J_ {2k} (n)} {J_ {k} (n)}}}   , are integer multiplicative functions.

  • ∑δ∣nδsJr(δ)Js(nδ)=Jr+s(n){\ displaystyle \ sum _ {\ delta \ mid n} \ delta ^ {s} J_ {r} (\ delta) J_ {s} \ left ({\ frac {n} {\ delta}} \ right) = J_ {r + s} (n)}   . [3] [4]

Matrix Group Order

Complete linear group of order matricesm {\ displaystyle m}   aboveZn {\ displaystyle \ mathbb {Z} _ {n}}   has the order [5]

|GL⁡(m,Zn)|=nm(m-one)2∏k=onemJk(n).{\ displaystyle | \ operatorname {GL} (m, \ mathbb {Z} _ {n}) | = n ^ {\ frac {m (m-1)} {2}} \ prod _ {k = 1} ^ {m} J_ {k} (n).}  

Special linear order groupm {\ displaystyle m}   aboveZn {\ displaystyle \ mathbb {Z} _ {n}}   has order

|SL⁡(m,Zn)|=nm(m-one)2∏k=2mJk(n).{\ displaystyle | \ operatorname {SL} (m, \ mathbb {Z} _ {n}) | = n ^ {\ frac {m (m-1)} {2}} \ prod _ {k = 2} ^ {m} J_ {k} (n).}  

Symplectic group of order matricesm {\ displaystyle m}   aboveZn {\ displaystyle \ mathbb {Z} _ {n}}   has order

|Sp⁡(2m,Zn)|=nm2∏k=onemJ2k(n).{\ displaystyle | \ operatorname {Sp} (2m, \ mathbb {Z} _ {n}) | = n ^ {m ^ {2}} \ prod _ {k = 1} ^ {m} J_ {2k} ( n).}  

The first two formulas were discovered by Jordan.

Examples

Lists in OEIS J 2 on A007434 , J 3 on A059376 , J 4 on A059377 , J 5 on A059378 , J 6 to J 10 on lists A069091 - A069095 .


Multiplicative functions defined by the relation J 2 (n) / J 1 (n) in A001615 , J 3 (n) / J 1 (n) in A160889 , J 4 (n) / J 1 (n) in A160891 , J 5 ( n) / J 1 (n) in A160893 , J 6 (n) / J 1 (n) in A160895 , J 7 (n) / J 1 (n) in A160897 , J 8 (n) / J 1 (n) in A160908 , J 9 (n) / J 1 (n) in A160953 , J 10 (n) / J 1 (n) in A160957 , J 11 (n) / J 1 (n) in A160960 .


Examples of relations J 2k (n) / J k (n): J 4 (n) / J 2 (n) in A065958 , J 6 (n) / J 3 (n) in A065959 and J 8 (n) / J 4 (n) in A065960 .

Notes

  1. ↑ There are other functions of Jordan. So, Merzlyakov writes: “ Theorem . There is a “Jordan Function”J:N→N {\ displaystyle J: \ mathbb {N} \ to \ mathbb {N}}   with the following property: every finite group G fromGLn(C) {\ displaystyle GL_ {n} (\ mathbb {C})}   contains an abelian normal subgroup A with index⩽L(n) {\ displaystyle \ leqslant L (n)}   . "
  2. ↑ Sándor, Crstici, 2004 , p. 106.
  3. ↑ Holden, Orrison, Varble .
  4. ↑ Gegenbauer formula
  5. ↑ Andrica, Piticari, 2004 .

Literature

  • Dickson LE History of the Theory of Numbers , Vol. I. - Chelsea Publishing , 1971. - S. 147. - ISBN 0-8284-0086-5 .
  • M. Ram Murty. Problems in Analytic Number Theory. - Springer-Verlag , 2001. - T. 206. - S. 11. - ( Graduate Texts in Mathematics ). - ISBN 0-387-95143-1 .
  • Jozsef Sándor, Borislav Crstici. Handbook of number theory II. - Dordrecht: Kluwer Academic, 2004. - S. 32–36. - ISBN 1-4020-2546-7 .
  • Matthew Holden, Michael Orrison, Michael Varble. Yet another Generalization of Euler's Totient Function .
  • Dorin Andrica, Mihai Piticari. On some Extensions of Jordan's arithmetical Functions // Acta universitatis Apulensis. - 2004. - No. 7 .

Links

  • Merzlyakov Yu.I. Rational groups. - Moscow: "Science", 1980. - (Modern Algebra).
Source - https://ru.wikipedia.org/w/index.php?title=Zhordanov_totent&oldid=96461808


More articles:

  • Belfast Telegraph
  • Gringauz, Konstantin Iosifovich
  • Church of the Kazan Icon of the Mother of God (Novosil)
  • Terzerol
  • Timergazin, Kadyr Rakhimovich
  • Dry Vir
  • Lies, Spies, Bloody Twitter
  • Slavets, Jakub
  • The capture of the snowy town (picture)
  • Useful idiot (Homeland)

All articles

Clever Geek | 2019