Quantum dilogarithm is a special function defined by the formula
In terms of the we have .
Let be - “q-commuting variables” that are elements of some non-commutative algebra and satisfy the Weyl relation [1] . Then the quantum dilogarithm satisfies the Schutzenberger identity [2]
Faddeev – Volkov identity [3]
and the identity of Faddeev - Kashaev [4]
The last identity is a quantum generalization of the five-member Rogers identity.
Faddeev's quantum dilogarithm defined by the following formula:
- {\ displaystyle \ Phi _ {b} (z) = \ exp \ left ({\ frac {1} {4}} \ int _ {C} {\ frac {e ^ {- 2izw}} {\ sinh (wb ) \ sinh (w / b)}} {\ frac {\ operatorname {d} \! w} {w}} \ right)} ,
where is the integration loop bypasses the singularity at t = 0 from above [5] . The same function can be described using the Voronovich integral formula
Ludwig Dmitrievich Faddeev discovered a five-term quantum identity
Where and - - normalized quantum mechanical momentum operators and positions satisfying the Heisenberg uncertainty relation
and inverse relation
The quantum dilogarithm finds application in mathematical physics , and the theory of .
The exact relationship between the and expressed by identity
- ,
which is executed at Im .
Notes
- ↑ Faddeev, 2011 , p. 65.
- ↑ The writing of Schützenberger is taken from Faddeev’s article.
- ↑ Faddeev, 2011 , p. 65, formula (4).
- ↑ Faddeev, 2011 , p. 65-66, formula (5).
- ↑ Faddeev, 2011 , p. 67, formula (13).
Literature
- Faddeev L.D. Volkov Pentagon for a modular quantum dilogarithm // Funkts. analysis and its application .. - 2011. - T. 45 , no. 4 . - S. 65–71 .
- Faddeev LD Currentlike variables in massive and massless integrable models // Quantum groups and their applications in physics (Varenna, 1994), Proc. Internat. School Phys. Enrico Fermi, 127, IOS. - Amsterdam, 1996 .-- pp. 117–135.
- Faddeev LD Discrete Heisenberg-Weyl group and modular group // Letters in Mathematical Physics . - 1995. - T. 34 , no. 3 . - S. 249–254 . - DOI : 10.1007 / BF01872779 . - . - arXiv : hep-th / 9504111 .
- Faddeev LD, Kashaev RM Quantum dilogarithm // Modern Physics Letters A. - 1994. - T. 9 , no. 5 . - S. 427-434 . - DOI : 10.1142 / S0217732394000447 . - . - arXiv : hep-th / 9310070 .
- Faddeev LD, Volkov A. Yu. Abelian current algebra and the Virasoro algebra on the lattice // Physics Letters B. - 1993.- T. 315 , no. 3-4 . - S. 311-318 . - DOI : 10.1016 / 0370-2693 (93) 91618-W . - . - arXiv : hep-th / 9307048 .
- Kirillov AN Dilogarithm identities // Progress of Theoretical Physics Supplement . - 1995 .-- T. 118 . - S. 61–142 . - DOI : 10.1143 / PTPS.118.61 . - . - arXiv : hep-th / 9408113 .
- Schützenberger MP Une interprétation de certaines solutions de l'équation fonctionnelle: F (x + y) = F (x) F (y) // Comptes Rendus de l'Académie des Sciences de Paris . - 1953. - T. 236 . - S. 352–353 .
- Woronowicz SL Quantum exponential function // Reviews in Mathematical Physics . - 2000. - T. 12 , no. 6 . - S. 873–920 . - DOI : 10.1142 / S0129055X00000344 . - .
Links
- quantum dilogarithm on nLab