Clever Geek Handbook
📜 ⬆️ ⬇️

Quantum dilogarithm

Quantum dilogarithm is a special function defined by the formula

ϕ(x)≡(x;q)∞=∏n=0∞(one-xqn),|q|<one{\ displaystyle \ phi (x) \ equiv (x; q) _ {\ infty} = \ prod _ {n = 0} ^ {\ infty} (1-xq ^ {n}), \ quad | q | < one} {\ displaystyle \ phi (x) \ equiv (x; q) _ {\ infty} = \ prod _ {n = 0} ^ {\ infty} (1-xq ^ {n}), \ quad | q | < one}

In terms of the we haveϕ(x)=Eq(x) {\ displaystyle \ phi (x) = E_ {q} (x)} {\ displaystyle \ phi (x) = E_ {q} (x)} .

Let beu,v {\ displaystyle u, v} u, v - “q-commuting variables” that are elements of some non-commutative algebra and satisfy the Weyl relationuv=qvu {\ displaystyle uv = qvu} {\ displaystyle uv = qvu} [1] . Then the quantum dilogarithm satisfies the Schutzenberger identity [2]

ϕ(u)ϕ(v)=ϕ(u+v){\ displaystyle \ phi (u) \ phi (v) = \ phi (u + v)} {\ displaystyle \ phi (u) \ phi (v) = \ phi (u + v)}

Faddeev – Volkov identity [3]

ϕ(v)ϕ(u)=ϕ(u+v-vu){\ displaystyle \ phi (v) \ phi (u) = \ phi (u + v-vu)} {\ displaystyle \ phi (v) \ phi (u) = \ phi (u + v-vu)}

and the identity of Faddeev - Kashaev [4]

ϕ(v)ϕ(u)=ϕ(u)ϕ(-vu)ϕ(v){\ displaystyle \ phi (v) \ phi (u) = \ phi (u) \ phi (-vu) \ phi (v)} {\ displaystyle \ phi (v) \ phi (u) = \ phi (u) \ phi (-vu) \ phi (v)}

The last identity is a quantum generalization of the five-member Rogers identity.

Faddeev's quantum dilogarithmΦb(w) {\ displaystyle \ Phi _ {b} (w)} {\ displaystyle \ Phi _ {b} (w)} defined by the following formula:

Φb(z)=exp⁡(onefour∫Ce-2izwsinh⁡ ( w b ) sinh ⁡ ( w / b ) d w w ){\ displaystyle \ Phi _ {b} (z) = \ exp \ left ({\ frac {1} {4}} \ int _ {C} {\ frac {e ^ {- 2izw}} {\ sinh (wb ) \ sinh (w / b)}} {\ frac {\ operatorname {d} \! w} {w}} \ right)} {\ displaystyle \ Phi _ {b} (z) = \ exp \ left ({\ frac {1} {4}} \ int _ {C} {\ frac {e ^ {- 2izw}} {\ sinh (wb ) \ sinh (w / b)}} {\ frac {\ operatorname {d} \! w} {w}} \ right)} ,

where is the integration loopC {\ displaystyle C} C bypasses the singularity at t = 0 from above [5] . The same function can be described using the Voronovich integral formula

Φb(x)=exp⁡(i2π∫Rlog⁡(one+etb2+2πbx)one+etdt).{\ displaystyle \ Phi _ {b} (x) = \ exp \ left ({\ frac {i} {2 \ pi}} \ int _ {\ mathbb {R}} {\ frac {\ log (1 + e ^ {tb ^ {2} +2 \ pi bx})} {1 + e ^ {t}}} \ operatorname {d} \! t \ right).} {\ displaystyle \ Phi _ {b} (x) = \ exp \ left ({\ frac {i} {2 \ pi}} \ int _ {\ mathbb {R}} {\ frac {\ log (1 + e ^ {tb ^ {2} +2 \ pi bx})} {1 + e ^ {t}}} \ operatorname {d} \! t \ right).}

Ludwig Dmitrievich Faddeev discovered a five-term quantum identity

Φb(p^)Φb(q^)=Φb(q^)Φb(p^+q^)Φb(p^){\ displaystyle \ Phi _ {b} ({\ hat {p}}) \ Phi _ {b} ({\ hat {q}}) = \ Phi _ {b} ({\ hat {q}}) \ Phi _ {b} ({\ hat {p}} + {\ hat {q}}) \ Phi _ {b} ({\ hat {p}})} {\ displaystyle \ Phi _ {b} ({\ hat {p}}) \ Phi _ {b} ({\ hat {q}}) = \ Phi _ {b} ({\ hat {q}}) \ Phi _ {b} ({\ hat {p}} + {\ hat {q}}) \ Phi _ {b} ({\ hat {p}})}

Wherep^ {\ displaystyle {\ hat {p}}} {\ displaystyle {\ hat {p}}} andq^ {\ displaystyle {\ hat {q}}} {\ displaystyle {\ hat {q}}} - - normalized quantum mechanical momentum operators and positions satisfying the Heisenberg uncertainty relation

[p^,q^]=one2πi,{\ displaystyle [{\ hat {p}}, {\ hat {q}}] = {\ frac {1} {2 \ pi i}},} {\ displaystyle [{\ hat {p}}, {\ hat {q}}] = {\ frac {1} {2 \ pi i}},}

and inverse relation

Φb(x)Φb(-x)=Φb(0)2eπix2,Φb(0)=eπi24(b2+b-2).{\ displaystyle \ Phi _ {b} (x) \ Phi _ {b} (- x) = \ Phi _ {b} (0) ^ {2} e ^ {\ pi ix ^ {2}}, \ quad \ Phi _ {b} (0) = e ^ {{\ frac {\ pi i} {24}} \ left (b ^ {2} + b ^ {- 2} \ right)}.} {\ displaystyle \ Phi _ {b} (x) \ Phi _ {b} (- x) = \ Phi _ {b} (0) ^ {2} e ^ {\ pi ix ^ {2}}, \ quad \ Phi _ {b} (0) = e ^ {{\ frac {\ pi i} {24}} \ left (b ^ {2} + b ^ {- 2} \ right)}.}

The quantum dilogarithm finds application in mathematical physics , and the theory of .

The exact relationship between the andΦb {\ displaystyle \ Phi _ {b}} {\ displaystyle \ Phi _ {b}} expressed by identity

Φb(z)=Ee2πib2(-eπib2+2πzb)Ee-2πi/b2(-e-πi/b2+2πz/b){\ displaystyle \ Phi _ {b} (z) = {\ frac {E_ {e ^ {2 \ pi ib ^ {2}}} (- e ^ {\ pi ib ^ {2} +2 \ pi zb} )} {E_ {e ^ {- 2 \ pi i / b ^ {2}}} (- e ^ {- \ pi i / b ^ {2} +2 \ pi z / b})}}} {\ displaystyle \ Phi _ {b} (z) = {\ frac {E_ {e ^ {2 \ pi ib ^ {2}}} (- e ^ {\ pi ib ^ {2} +2 \ pi zb} )} {E_ {e ^ {- 2 \ pi i / b ^ {2}}} (- e ^ {- \ pi i / b ^ {2} +2 \ pi z / b})}}} ,

which is executed at Imb2>0 {\ displaystyle b ^ {2}> 0} {\ displaystyle b ^ {2}> 0} .

Notes

  1. ↑ Faddeev, 2011 , p. 65.
  2. ↑ The writing of Schützenberger is taken from Faddeev’s article.
  3. ↑ Faddeev, 2011 , p. 65, formula (4).
  4. ↑ Faddeev, 2011 , p. 65-66, formula (5).
  5. ↑ Faddeev, 2011 , p. 67, formula (13).

Literature

  • Faddeev L.D. Volkov Pentagon for a modular quantum dilogarithm // Funkts. analysis and its application .. - 2011. - T. 45 , no. 4 . - S. 65–71 .
  • Faddeev LD Currentlike variables in massive and massless integrable models // Quantum groups and their applications in physics (Varenna, 1994), Proc. Internat. School Phys. Enrico Fermi, 127, IOS. - Amsterdam, 1996 .-- pp. 117–135.
  • Faddeev LD Discrete Heisenberg-Weyl group and modular group // Letters in Mathematical Physics . - 1995. - T. 34 , no. 3 . - S. 249–254 . - DOI : 10.1007 / BF01872779 . - . - arXiv : hep-th / 9504111 .
  • Faddeev LD, Kashaev RM Quantum dilogarithm // Modern Physics Letters A. - 1994. - T. 9 , no. 5 . - S. 427-434 . - DOI : 10.1142 / S0217732394000447 . - . - arXiv : hep-th / 9310070 .
  • Faddeev LD, Volkov A. Yu. Abelian current algebra and the Virasoro algebra on the lattice // Physics Letters B. - 1993.- T. 315 , no. 3-4 . - S. 311-318 . - DOI : 10.1016 / 0370-2693 (93) 91618-W . - . - arXiv : hep-th / 9307048 .
  • Kirillov AN Dilogarithm identities // Progress of Theoretical Physics Supplement . - 1995 .-- T. 118 . - S. 61–142 . - DOI : 10.1143 / PTPS.118.61 . - . - arXiv : hep-th / 9408113 .
  • Schützenberger MP Une interprétation de certaines solutions de l'équation fonctionnelle: F (x + y) = F (x) F (y) // Comptes Rendus de l'Académie des Sciences de Paris . - 1953. - T. 236 . - S. 352–353 .
  • Woronowicz SL Quantum exponential function // Reviews in Mathematical Physics . - 2000. - T. 12 , no. 6 . - S. 873–920 . - DOI : 10.1142 / S0129055X00000344 . - .

Links

  • quantum dilogarithm on nLab


Source - https://ru.wikipedia.org/w/index.php?title= Quantum Dilogarithm &oldid = 92436543


More articles:

  • Stroganov, Mikhail Viktorovich
  • Baryancistrus
  • Gudyrvozh (a tributary of Vuktyl)
  • Coat of arms of the King of Spain
  • Gostev, Igor Aronovich
  • Burba, Hans-Joachim
  • Reshanov, Denis Mikhailovich
  • Timoshin, Vyacheslav Fedorovich
  • Prelesten Parish (Izyum Uyezd)
  • Frolov, Alexey Dmitrievich

All articles

Clever Geek | 2019