Clever Geek Handbook
πŸ“œ ⬆️ ⬇️

Ultrasound procedure

Medical ultrasound imaging Toshiba SSA-270A (1988 [1] ).
Ultrasound machine Aloka Prosound SSD - 5500SV (1998 [1] )
Portable ultrasound machine GE Logiq V

Ultrasound examination ( ultrasound ), sonography is a non-invasive examination of the human or animal organism using ultrasound waves .

Physical Basics

The physical basis of ultrasound is the piezoelectric effect [2] . When single crystals of certain chemical compounds are deformed ( quartz , barium titanate ) under the influence of ultrasonic waves, opposite in sign electric charges arise on the surface of these crystals - a direct piezoelectric effect. When an alternating electric charge is applied to them, crystals oscillate with the emission of ultrasonic waves. Thus, one and the same piezoelectric element can be alternately either a receiver or a source of ultrasonic waves. This part in ultrasonic devices is called an acoustic transducer, transducer or sensor (the transducer sensor contains one or many quartz crystals, which are also called piezoelectric elements). The same crystals are used to receive and transmit sound waves. The sensor also has a sound-absorbing layer that filters sound waves, and an acoustic lens that allows you to focus on the desired wave.

Ultrasound propagates in media in the form of alternating zones of compression and expansion of matter. Sound waves, including ultrasound, are characterized by a period of oscillation - the duration of one full cycle of elastic oscillation of the medium; frequency - the number of oscillations per unit time; length - the distance between the points of one phase and the propagation velocity, which depends mainly on the elasticity and density of the medium. The wavelength is inversely proportional to its frequency. The higher the wave frequency, the higher the resolution of the ultrasonic sensor. In systems of medical ultrasound diagnostics, frequencies from 2 to 29 M Hz are usually used. The resolution of modern ultrasound devices can reach fractions of mm.

Any medium, including body tissue, prevents the spread of ultrasound, that is, it has various acoustic impedances , the magnitude of which depends on their density and the speed of propagation of sound waves. The higher these parameters, the greater the acoustic impedance. Such a general characteristic of any elastic medium is denoted by the term β€œ acoustic impedance ”.

Having reached the boundary of two media with different acoustic impedances, the ultrasonic wave beam undergoes significant changes: one part of it continues to propagate in the new medium, is absorbed to one degree or another by it, the other is reflected . The reflection coefficient depends on the difference in the acoustic resistance of the tissues adjacent to each other: the larger this difference, the greater the reflection and, naturally, the greater the intensity of the recorded signal, and therefore, the brighter and brighter it will look on the screen of the device. The full reflector is the boundary between the tissues and the air. [3]

In the simplest embodiment, the method allows one to estimate the distance to the interface between the densities of two bodies, based on the travel time of the wave reflected from the interface. More sophisticated research methods (for example, based on the Doppler effect ) make it possible to determine the speed of movement of the density interface, as well as the difference in the densities forming the boundary.

Ultrasonic vibrations during propagation obey the laws of geometric optics . In a homogeneous medium, they propagate in a straight line and at a constant speed. At the boundary of various media with different acoustic densities, some of the rays are reflected, and some are refracted, continuing their rectilinear propagation. The higher the gradient of the difference in acoustic density of the boundary media, the greater part of the ultrasonic vibrations is reflected. Since 99.99% of vibrations are reflected at the interface between ultrasound from air and skin, ultrasound scanning of the patient requires lubrication of the skin surface with water jelly, which acts as a transition medium. Reflection depends on the angle of incidence of the beam (the largest in the perpendicular direction) and the frequency of ultrasonic vibrations (at a higher frequency, most are reflected).

A frequency of 2.5-3.5 MHz is used to study the organs of the abdominal cavity and retroperitoneal space, as well as the cavity of the small pelvis, and a frequency of 7.5 MHz is used to study the thyroid gland.

Of particular interest in the diagnosis is the use of the Doppler effect . The essence of the effect is to change the frequency of sound due to the relative motion of the source and receiver of sound. When sound is reflected from a moving object, the frequency of the reflected signal changes (a frequency shift occurs).

When superimposed on the primary and reflected signals, beats occur that are heard using headphones or a loudspeaker.

Components of an ultrasound diagnostic system

Ultrasonic Wave Generator

An ultrasonic wave generator is a sensor that simultaneously plays the role of a receiver of reflected echo signals. The generator operates in a pulsed mode, sending about 1000 pulses per second. Between the generation of ultrasonic waves, the piezoelectric transducer captures the reflected signals.

Ultrasonic Sensor

As a detector or transducer, a complex sensor is used, consisting of several hundreds or thousands [4] [5] of small piezocrystalline transducers operating in the same or different modes, similar to digital antenna arrays . A focusing lens is mounted in the classic sensor, which makes it possible to create focus at a certain depth. Due to the digital beam formation in modern sensors, it is also possible to realize its dynamic focusing in depth with multidimensional apodization [4] [5] .

Sensor Types

All ultrasonic sensors are divided into mechanical and electronic. In mechanical scanning is carried out due to the movement of the emitter (it either rotates or sways). In electronic scanning is carried out electronically. The disadvantages of mechanical sensors are noise, vibration produced by the movement of the emitter, as well as low resolution. Mechanical sensors are obsolete and are not used in modern scanners. Electronic sensors contain emitter gratings [4] [5] , for example, from 512 or 1024x4 elements [4] [5] , which, due to digital beam forming, provide three types of ultrasonic scanning: linear (parallel), convex and sector. Accordingly, the sensors or transducers of ultrasonic devices are called linear, convex and sector. The choice of sensor for each study is based on the depth and nature of the position of the organ.

Linear Sensors
 
linear sensor

Linear sensors use a frequency of 5-15 MHz. The advantage of a linear sensor is the full compliance of the organ under study with the position of the transducer itself on the surface of the body. The disadvantage of linear sensors is the difficulty in ensuring in all cases a uniform adherence of the transducer surface to the patient's skin, which leads to distortion of the resulting image at the edges. Also, linear sensors due to the higher frequency allow to obtain an image of the studied area with high resolution, however, the scanning depth is quite small (no more than 11 cm). They are used mainly for the study of superficially located structures - the thyroid gland, mammary glands, small joints and muscles, as well as for the study of blood vessels.

Convex sensors
 
convex sensor

Convex sensor uses a frequency of 1.8-7.5 MHz. It has a shorter length, so achieving uniformity of its fit to the patient’s skin is simpler. However, when using convex sensors, the resulting image is several centimeters wider than the dimensions of the sensor itself. To clarify the anatomical landmarks, the doctor must take into account this discrepancy. Due to the lower frequency, the scanning depth reaches 20-25 cm. It is usually used to study deeply located organs: organs of the abdominal cavity and retroperitoneal space, genitourinary system, and hip joints.

Sector Sensors
 
sector sensor

The sector sensor operates at a frequency of 1.5-5 MHz. There is an even greater discrepancy between the size of the transducer and the resulting image, therefore it is used mainly in cases where it is necessary to get a large view at a depth from a small area of ​​the body. The most appropriate use of sector scanning in the study, for example, through intercostal spaces. A typical application of a sector sensor is echocardiography - a study of the heart.

Ultrasonic Emission Gel

Unlike the audible range, ultrasound is noticeably attenuated and distorted by thin (fractions of mm) obstacles, and high resolution scanning is possible only with minimal distortion in the amplitude and time of sound propagation. With a simple attachment of the sensor, an air gap forms of constantly changing thickness and geometry. Ultrasound is reflected from both boundaries of the layer, weakening and interfering with a useful reflection. To eliminate reflective boundaries at the contact point, special gels are used that fill the area between the sensor and the skin.

Typical gel composition: glycerin, sodium tetraborate, styrene-maleic anhydride copolymer, purified water.

Ultrasound Techniques

The reflected echoes enter the amplifier and special reconstruction systems, after which they appear on the monitor screen in the form of sections of the body with different shades of gray. With positive registration, the maximum intensity of the echo signals appears on the screen in white (echopositive areas), and the minimum in black (echo-negative areas). With negative registration, the opposite is observed. The choice of positive or negative registration is determined by the personal preferences of the operator. The image obtained during the study may be different depending on the operating modes of the scanner. The following modes are distinguished:

  • A-mode ( English a mplitude ). The technique provides information in the form of a one-dimensional image, where the first coordinate is the amplitude of the reflected signal from the boundary of media with different acoustic impedances, and the second is the distance to this boundary. Knowing the speed of propagation of an ultrasonic wave in the tissues of a human body, it is possible to determine the distance to this zone by dividing in half (since the ultrasound beam travels this path twice) the product of the pulse return time and the speed of ultrasound.
  • B-mode ( English b rightness ). The technique provides information in the form of two-dimensional seroscale tomographic images of anatomical structures in real time, which allows us to assess their morphological state.
  • M-mode ( English m otion ). The technique provides information in the form of a one-dimensional image, the second coordinate is replaced by a temporary one. The vertical axis shows the distance from the sensor to the positioned structure, and the horizontal axis shows time. The regimen is used mainly for examining the heart. Provides information about the form of curves that reflect the amplitude and speed of movement of cardiac structures.

Dopplerography

 
Modern triplex spectral dopplerography of the carotid artery (B-mode + CDK + SD)
 
A device for blind Dopplerography , on the device screen are displayed: a diagram of the vessels of the brain along with the skull and the blood flow spectrum obtained by the device from a given depth (blindly).

The technique is based on the use of the Doppler effect . The essence of the effect is that ultrasonic waves are reflected from moving objects with a changed frequency. This frequency shift is proportional to the speed of the located structures - if the movement is directed towards the sensor, then the frequency increases, if from the sensor it decreases.

There are blind dopplerography (not considered an ultrasound scan, performed as part of a functional diagnosis) and B-mode (modern).

The first obsolete version got its name due to the fact that the location of the flow (vessel) is selected based on the installation of the blind depth of the scan on the device, that is, the device has only Doppler mode, without B-mode, so it is impossible to determine exactly which vessel spectral data are obtained.

In modern ultrasound scanners, dopplerography, as a rule, is performed in duplex or even triplex mode, that is, first a vessel is in B-mode, then an area (control volume) of data measurement is set on it corresponding to the desired scanning depth and a stream spectrum is obtained.

Spectral Dopplerography

Designed to assess the movement of moving media. In particular, blood flow in relatively large vessels and chambers of the heart, heart walls. The main type of diagnostic information is spectrographic recording, which is a sweep of blood flow velocity over time. In such a graph, speed is plotted on the vertical axis, and time on the horizontal axis. The signals displayed above the horizontal axis come from the blood flow directed towards the sensor, below this axis from the sensor. In addition to the speed and direction of blood flow, the nature of the blood flow can be determined by the type of Doppler spectrogram: the laminar flow is displayed in the form of a narrow curve with clear contours, and the turbulent one - in a wide inhomogeneous curve.

Continuous (constant wave) spectral dopplerography

The technique is based on constant radiation and constant reception of reflected ultrasonic waves. The magnitude of the frequency shift of the reflected signal is determined by the movement of all structures in the path of the ultrasound beam within the depth of its penetration. Disadvantage: the impossibility of an isolated analysis of flows in a strictly defined place. Advantages: allows the measurement of high blood flow rates.

Pulse LED

The technique is based on the periodic emission of a series of pulses of ultrasonic waves, which, reflected from red blood cells, are sequentially sensed by the same sensor. In this mode, signals are recorded, reflected only from a certain distance from the sensor, which are set at the discretion of the doctor. The place of study of blood flow is called the control volume. Advantages: the ability to assess blood flow at any given point.

Tissue SD

It is similar to pulsed diabetes, only adapted not for blood flow, but for the myocardium (heart wall).

 
Echocardiography with CDK

Color Doppler Mapping (CDM)

Based on color coding of the Doppler shift value of the emitted frequency. The technique provides a direct visualization of blood flows in the heart and in relatively large vessels. Red color corresponds to the flow going towards the sensor, blue - from the sensor. Dark shades of these colors correspond to low speeds, light shades - high. Disadvantage: the impossibility of obtaining images of small blood vessels with a low blood flow velocity. Advantages: allows you to evaluate both the morphological state of the vessels and the state of blood flow by them.

Energy Dopplerography (ED)

The technique is based on the analysis of the amplitudes of all echo signals of the Doppler spectrum, reflecting the density of red blood cells in a given volume. Shades of color (from dark orange to yellow) carry information about the intensity of the echo signal. The diagnostic value of energy dopplerography is the ability to assess vascularization of organs and pathological sites. НСдостаток: Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΡΡƒΠ΄ΠΈΡ‚ΡŒ ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π΅ ΠΈ скорости ΠΊΡ€ΠΎΠ²ΠΎΡ‚ΠΎΠΊΠ°. Достоинства: ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ всС сосуды, нСзависимо ΠΎΡ‚ ΠΈΡ… Ρ…ΠΎΠ΄Π° ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠ³ΠΎ Π»ΡƒΡ‡Π°, Π² Ρ‚ΠΎΠΌ числС кровСносныС сосуды ΠΎΡ‡Π΅Π½ΡŒ нСбольшого Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π° ΠΈ с Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ ΠΊΡ€ΠΎΠ²ΠΎΡ‚ΠΎΠΊΠ°.

ΠšΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹

ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Ρ‚Π°ΠΊΠΆΠ΅ ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹, Π² частности Π¦Π”Πš+Π­Π” β€” конвСргСнтная цвСтовая доплСрография.

Π’Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ΅ доплСровскоС ΠΊΠ°Ρ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ трёхмСрная Π­Π”

ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ, Π΄Π°ΡŽΡ‰ΠΈΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π½Π°Π±Π»ΡŽΠ΄Π°Ρ‚ΡŒ ΠΎΠ±ΡŠΠ΅ΠΌΠ½ΡƒΡŽ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½Ρƒ пространствСнного располоТСния кровСносных сосудов Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π² любом ракурсС, Ρ‡Ρ‚ΠΎ позволяСт с высокой Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Ρ‚ΡŒ ΠΈΡ… ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ анатомичСскими структурами ΠΈ патологичСскими процСссами, Π² Ρ‚ΠΎΠΌ числС со злокачСствСнными опухолями. Π’ этом Ρ€Π΅ΠΆΠΈΠΌΠ΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ запоминания Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΠΊΠ°Π΄Ρ€ΠΎΠ² изобраТСния. ПослС Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ Ρ€Π΅ΠΆΠΈΠΌΠ° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°Π΅Ρ‚ Π΄Π°Ρ‚Ρ‡ΠΈΠΊ ΠΈΠ»ΠΈ измСняСт Π΅Π³ΠΎ ΡƒΠ³Π»ΠΎΠ²ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Π½Π΅ Π½Π°Ρ€ΡƒΡˆΠ°Ρ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π° Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠ° с Ρ‚Π΅Π»ΠΎΠΌ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°. ΠŸΡ€ΠΈ этом Π·Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ сСрии Π΄Π²ΡƒΡ…ΠΌΠ΅Ρ€Π½Ρ‹Ρ… эхограмм с нСбольшим шагом (ΠΌΠ°Π»ΠΎΠ΅ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ плоскостями сСчСния). На основС ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΊΠ°Π΄Ρ€ΠΎΠ² систСма рСконструируСт псСвдотрёхмСрноС [ нСизвСстный Ρ‚Π΅Ρ€ΠΌΠΈΠ½ ] ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ†Π²Π΅Ρ‚Π½ΠΎΠΉ части изобраТСния, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π΅Π΅ ΠΊΡ€ΠΎΠ²ΠΎΡ‚ΠΎΠΊ Π² сосудах. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΏΡ€ΠΈ этом Π½Π΅ строится Ρ€Π΅Π°Π»ΡŒΠ½Π°Ρ трСхмСрная модСль ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°, ΠΏΡ€ΠΈ ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΠ΅ измСнСния ΡƒΠ³Π»Π° ΠΎΠ±Π·ΠΎΡ€Π° ΠΏΠΎΡΠ²Π»ΡΡŽΡ‚ΡΡ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ гСомСтричСскиС искаТСния ΠΈΠ·-Π·Π° Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ Ρ‚Ρ€ΡƒΠ΄Π½ΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΡ‚ΡŒ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠ° Π²Ρ€ΡƒΡ‡Π½ΡƒΡŽ с Π½ΡƒΠΆΠ½ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ ΠΏΡ€ΠΈ рСгистрации ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ. ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠΉ ΠΏΠΎΠ»ΡƒΡ‡Π°Ρ‚ΡŒ Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½Ρ‹Π΅ изобраТСния Π±Π΅Π· искаТСний, называСтся ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΉ эхографии (3D).

ЭхоконтрастированиС

ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° основана Π½Π° Π²Π½ΡƒΡ‚Ρ€ΠΈΠ²Π΅Π½Π½ΠΎΠΌ Π²Π²Π΅Π΄Π΅Π½ΠΈΠΈ особых ΠΊΠΎΠ½Ρ‚Ρ€Π°ΡΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… вСщСств, содСрТащих свободныС ΠΌΠΈΠΊΡ€ΠΎΠΏΡƒΠ·Ρ‹Ρ€ΡŒΠΊΠΈ Π³Π°Π·Π° (Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ ΠΌΠ΅Π½Π΅Π΅ 5 ΠΌΠΊΠΌ ΠΏΡ€ΠΈ ΠΈΡ… циркуляции Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 5 ΠΌΠΈΠ½ΡƒΡ‚). ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ фиксируСтся Π½Π° экранС ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€Π°, Π° Π·Π°Ρ‚Π΅ΠΌ рСгистрируСтся с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€ΠΈΠ½Ρ‚Π΅Ρ€Π° .

Π’ клиничСской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π² Π΄Π²ΡƒΡ… направлСниях.

ДинамичСская эхоконтрастная ангиография

БущСствСнно ΡƒΠ»ΡƒΡ‡ΡˆΠ°Π΅Ρ‚ΡΡ визуализация ΠΊΡ€ΠΎΠ²ΠΎΡ‚ΠΎΠΊΠ°, особСнно Π² ΠΌΠ΅Π»ΠΊΠΈΡ… Π³Π»ΡƒΠ±ΠΎΠΊΠΎ располоТСнных сосудах с Π½ΠΈΠ·ΠΊΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ ΠΊΡ€ΠΎΠ²ΠΎΡ‚ΠΎΠΊΠ°; Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ΡΡ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π¦Π”Πš ΠΈ Π­Π”; обСспСчиваСтся Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ наблюдСния всСх Ρ„Π°Π· контрастирования сосудов Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ; возрастаСт Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΎΡ†Π΅Π½ΠΊΠΈ стСнотичСских ΠΏΠΎΡ€Π°ΠΆΠ΅Π½ΠΈΠΉ кровСносных сосудов.

Π’ΠΊΠ°Π½Π΅Π²ΠΎΠ΅ эхоконтрастированиС

ΠžΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°Π΅Ρ‚ΡΡ ΠΈΠ·Π±ΠΈΡ€Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ эхоконтрастных вСщСств Π² структуру ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΎΠ². Π‘Ρ‚Π΅ΠΏΠ΅Π½ΡŒ, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΈ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ эхоконтраста Π² Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Ρ‘Π½Π½Ρ‹Ρ… ΠΈ патологичСских тканях Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹. ΠŸΠΎΡΠ²Π»ΡΠ΅Ρ‚ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΏΠ΅Ρ€Ρ„ΡƒΠ·ΠΈΠΈ ΠΎΡ€Π³Π°Π½ΠΎΠ², ΡƒΠ»ΡƒΡ‡ΡˆΠ°Π΅Ρ‚ΡΡ контрастноС Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΏΠΎΡ€Π°ΠΆΠ΅Π½Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΡŒΡŽ, Ρ‡Ρ‚ΠΎ способствуСт ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ точности диагностики Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, особСнно злокачСствСнных ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ. [6]

ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅

ЭхоэнцСфалография

ЭхоэнцСфалография, ΠΊΠ°ΠΊ ΠΈ доплСрография, встрСчаСтся Π² Π΄Π²ΡƒΡ… тСхничСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΡΡ…: A-Ρ€Π΅ΠΆΠΈΠΌ (Π² строгом смыслС Π½Π΅ считаСтся ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²Ρ‹ΠΌ исслСдованиСм, Π²Ρ…ΠΎΠ΄ΠΈΡ‚ Π² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ диагностику ΠΈ Π² настоящСС врСмя практичСски Π½Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ) ΠΈ B-Ρ€Π΅ΠΆΠΈΠΌ, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠΈΠΉ Π½Π΅ΠΎΡ„ΠΈΡ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ «нСйросонография». Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ эффСктивно ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ°Ρ‚ΡŒ сквозь ΠΊΠΎΡΡ‚Π½ΡƒΡŽ Ρ‚ΠΊΠ°Π½ΡŒ, Π² Ρ‚ΠΎΠΌ числС кости Ρ‡Π΅Ρ€Π΅ΠΏΠ°, нСйросонография выполняСтся Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π³Ρ€ΡƒΠ΄Π½Ρ‹ΠΌ дСтям Ρ‡Π΅Ρ€Π΅Π· большой Ρ€ΠΎΠ΄Π½ΠΈΡ‡ΠΎΠΊ .

ΠžΡ„Ρ‚Π°Π»ΡŒΠΌΠΎΠ»ΠΎΠ³ΠΈΡ

Π’Π°ΠΊΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ эхоэнцСфалография, сущСствуСт Π² Π΄Π²ΡƒΡ… тСхничСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΡΡ… (Ρ€Π°Π·Π½Ρ‹Π΅ ΠΏΡ€ΠΈΠ±ΠΎΡ€Ρ‹): A-Ρ€Π΅ΠΆΠΈΠΌ (ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Π½Π΅ считаСтся Π£Π—Π˜) ΠΈ Π’-Ρ€Π΅ΠΆΠΈΠΌ.

Π£Π»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²Ρ‹Π΅ Π·ΠΎΠ½Π΄Ρ‹ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ для измСрСния Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² Π³Π»Π°Π·Π° ΠΈ опрСдСлСния полоТСния хрусталика.

Π’Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠ΅ Π±ΠΎΠ»Π΅Π·Π½ΠΈ

Π£Π»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠ΅ исслСдованиС ΠΈΠ³Ρ€Π°Π΅Ρ‚ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² постановкС Π΄ΠΈΠ°Π³Π½ΠΎΠ·Π° Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… ΠΎΡ€Π³Π°Π½ΠΎΠ², Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ:

  • Π±Ρ€ΡŽΡˆΠ½Π°Ρ ΠΏΠΎΠ»ΠΎΡΡ‚ΡŒ ΠΈ Π·Π°Π±Ρ€ΡŽΡˆΠΈΠ½Π½ΠΎΠ΅ пространство
    • ΠΏΠ΅Ρ‡Π΅Π½ΡŒ
    • ΠΆΡ‘Π»Ρ‡Π½Ρ‹ΠΉ ΠΏΡƒΠ·Ρ‹Ρ€ΡŒ ΠΈ ТСлчСвыводящиС ΠΏΡƒΡ‚ΠΈ
    • подТСлудочная ΠΆΠ΅Π»Π΅Π·Π°
    • сСлСзёнка
    • the kidneys
  • ΠΎΡ€Π³Π°Π½Ρ‹ ΠΌΠ°Π»ΠΎΠ³ΠΎ Ρ‚Π°Π·Π°
    • ΠΌΠΎΡ‡Π΅Ρ‚ΠΎΡ‡Π½ΠΈΠΊΠΈ
    • ΠΌΠΎΡ‡Π΅Π²ΠΎΠΉ ΠΏΡƒΠ·Ρ‹Ρ€ΡŒ
    • ΠΏΡ€Π΅Π΄ΡΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΆΠ΅Π»Π΅Π·Π°

Π’Π²ΠΈΠ΄Ρƒ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ нСвысокой стоимости ΠΈ высокой доступности ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠ΅ исслСдованиС являСтся ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ обслСдования ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° ΠΈ позволяСт Π΄ΠΈΠ°Π³Π½ΠΎΡΡ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ достаточно большоС количСство Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ онкологичСскиС заболСвания, хроничСскиС Π΄ΠΈΡ„Ρ„ΡƒΠ·Π½Ρ‹Π΅ измСнСния Π² ΠΎΡ€Π³Π°Π½Π°Ρ… (Π΄ΠΈΡ„Ρ„ΡƒΠ·Π½Ρ‹Π΅ измСнСния Π² ΠΏΠ΅Ρ‡Π΅Π½ΠΈ ΠΈ ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Π΅, ΠΏΠΎΡ‡ΠΊΠ°Ρ… ΠΈ ΠΏΠ°Ρ€Π΅Π½Ρ…ΠΈΠΌΠ΅ ΠΏΠΎΡ‡Π΅ΠΊ, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Π΅, Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΊΠΎΠ½ΠΊΡ€Π΅ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π² ΠΆΠ΅Π»Ρ‡Π½ΠΎΠΌ ΠΏΡƒΠ·Ρ‹Ρ€Π΅, ΠΏΠΎΡ‡ΠΊΠ°Ρ…, Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΉ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… ΠΎΡ€Π³Π°Π½ΠΎΠ², Тидкостных ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π² ΠΎΡ€Π³Π°Π½Π°Ρ….

Π’ силу физичСских особСнностСй Π½Π΅ всС ΠΎΡ€Π³Π°Π½Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ достовСрно ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΏΠΎΠ»Ρ‹Π΅ ΠΎΡ€Π³Π°Π½Ρ‹ ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎ-ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π°ΠΊΡ‚Π° труднодоступны для исслСдования ΠΈΠ·-Π·Π° содСрТания Π² Π½ΠΈΡ… Π³Π°Π·Π°. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅, ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²Π°Ρ диагностика ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ для опрСдСлСния ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΎΠΉ нСпроходимости ΠΈ косвСнных ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² спаСчного процСсса. ΠŸΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠ³ΠΎ исслСдования ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΡ‚ΡŒ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ свободной Тидкости Π² Π±Ρ€ΡŽΡˆΠ½ΠΎΠΉ полости, Ссли Π΅Ρ‘ достаточно ΠΌΠ½ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠ³Ρ€Π°Ρ‚ΡŒ Ρ€Π΅ΡˆΠ°ΡŽΡ‰ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² Π»Π΅Ρ‡Π΅Π±Π½ΠΎΠΉ Ρ‚Π°ΠΊΡ‚ΠΈΠΊΠ΅ ряда тСрапСвтичСских ΠΈ хирургичСских Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΈ Ρ‚Ρ€Π°Π²ΠΌ.

ΠŸΠ΅Ρ‡Π΅Π½ΡŒ

Π£Π»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠ΅ исслСдованиС ΠΏΠ΅Ρ‡Π΅Π½ΠΈ являСтся достаточно высокоинформативным. Π’Ρ€Π°Ρ‡ΠΎΠΌ ΠΎΡ†Π΅Π½ΠΈΠ²Π°ΡŽΡ‚ΡΡ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ ΠΏΠ΅Ρ‡Π΅Π½ΠΈ, Π΅Ρ‘ структура ΠΈ ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΡΡ‚ΡŒ, Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‡Π°Π³ΠΎΠ²Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ состояниС ΠΊΡ€ΠΎΠ²ΠΎΡ‚ΠΎΠΊΠ°. Π£Π—Π˜ позволяСт с достаточно высокой Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΈ ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ Π΄ΠΈΡ„Ρ„ΡƒΠ·Π½Ρ‹Π΅ измСнСния ΠΏΠ΅Ρ‡Π΅Π½ΠΈ (ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΉ Π³Π΅ΠΏΠ°Ρ‚ΠΎΠ·, хроничСский Π³Π΅ΠΏΠ°Ρ‚ΠΈΡ‚ ΠΈ Ρ†ΠΈΡ€Ρ€ΠΎΠ·), Ρ‚Π°ΠΊ ΠΈ ΠΎΡ‡Π°Π³ΠΎΠ²Ρ‹Π΅ (ТидкостныС ΠΈ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Π΅ образования). ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ слСдуСт Π΄ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π»ΡŽΠ±Ρ‹Π΅ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²Ρ‹Π΅ Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ исслСдования ΠΊΠ°ΠΊ ΠΏΠ΅Ρ‡Π΅Π½ΠΈ, Ρ‚Π°ΠΊ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΎΡ€Π³Π°Π½ΠΎΠ², Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Ρ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ вмСстС с клиничСскими, анамнСстичСскими Π΄Π°Π½Π½Ρ‹ΠΌΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… обслСдований.

Π–Ρ‘Π»Ρ‡Π½Ρ‹ΠΉ ΠΏΡƒΠ·Ρ‹Ρ€ΡŒ ΠΈ ΠΆΡ‘Π»Ρ‡Π½Ρ‹Π΅ ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΈ

ΠšΡ€ΠΎΠΌΠ΅ самой ΠΏΠ΅Ρ‡Π΅Π½ΠΈ оцСниваСтся состояниС ΠΆΡ‘Π»Ρ‡Π½ΠΎΠ³ΠΎ пузыря ΠΈ ΠΆΡ‘Π»Ρ‡Π½Ρ‹Ρ… ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ² β€” ΠΈΡΡΠ»Π΅Π΄ΡƒΡŽΡ‚ΡΡ ΠΈΡ… Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹, Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Π° стСнок, ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ, Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΊΠΎΠ½ΠΊΡ€Π΅ΠΌΠ΅Π½Ρ‚ΠΎΠ², состояниС ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰ΠΈΡ… Ρ‚ΠΊΠ°Π½Π΅ΠΉ. Π£Π—Π˜ позволяСт Π² Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ случаСв ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΊΠΎΠ½ΠΊΡ€Π΅ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π² полости ΠΆΠ΅Π»Ρ‡Π½ΠΎΠ³ΠΎ пузыря.

ΠŸΠΎΠ΄ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½Π°Ρ ΠΆΠ΅Π»Π΅Π·Π°

ΠŸΡ€ΠΈ исслСдовании ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ ΠΎΡ†Π΅Π½ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π΅Ρ‘ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹, Ρ„ΠΎΡ€ΠΌΠ°, ΠΊΠΎΠ½Ρ‚ΡƒΡ€Ρ‹, ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΡΡ‚ΡŒ ΠΏΠ°Ρ€Π΅Π½Ρ…ΠΈΠΌΡ‹, Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ. ΠšΠ°Ρ‡Π΅ΡΡ‚Π²Π΅Π½Π½ΠΎΠ΅ Π£Π—Π˜ ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ часто довольно Π·Π°Ρ‚Ρ€ΡƒΠ΄Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½Π° ΠΌΠΎΠΆΠ΅Ρ‚ частично ΠΈΠ»ΠΈ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠ΅Ρ€Π΅ΠΊΡ€Ρ‹Π²Π°Ρ‚ΡŒΡΡ Π³Π°Π·Π°ΠΌΠΈ, находящимися Π² ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ΅, Ρ‚ΠΎΠ½ΠΊΠΎΠΌ ΠΈ толстом ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ΅. НаиболСС часто выносимоС Π²Ρ€Π°Ρ‡Π°ΠΌΠΈ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠΉ диагностики Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ Β«Π΄ΠΈΡ„Ρ„ΡƒΠ·Π½Ρ‹Π΅ измСнСния Π² ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Π΅Β» ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΡ‚Ρ€Π°ΠΆΠ°Ρ‚ΡŒ ΠΊΠ°ΠΊ возрастныС измСнСния (склСротичСскиС, Тировая ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΡ), Ρ‚Π°ΠΊ ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ измСнСния вслСдствиС хроничСских Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… процСссов.

ΠŸΠΎΡ‡ΠΊΠΈ ΠΈ Π½Π°Π΄ΠΏΠΎΡ‡Π΅Ρ‡Π½ΠΈΠΊΠΈ, Π·Π°Π±Ρ€ΡŽΡˆΠΈΠ½Π½ΠΎΠ΅ пространство

ИсслСдованиС Π·Π°Π±Ρ€ΡŽΡˆΠΈΠ½Π½ΠΎΠ³ΠΎ пространства, ΠΏΠΎΡ‡Π΅ΠΊ ΠΈ Π½Π°Π΄ΠΏΠΎΡ‡Π΅Ρ‡Π½ΠΈΠΊΠΎΠ² являСтся достаточно Ρ‚Ρ€ΡƒΠ΄Π½Ρ‹ΠΌ для Π²Ρ€Π°Ρ‡Π° Π²Π²ΠΈΠ΄Ρƒ особСнностСй ΠΈΡ… располоТСния, слоТности строСния ΠΈ многогранности ΠΈ нСоднозначности Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΠ²ΠΊΠΈ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠΉ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½Ρ‹ этих ΠΎΡ€Π³Π°Π½ΠΎΠ². ΠŸΡ€ΠΈ исслСдовании ΠΏΠΎΡ‡Π΅ΠΊ оцСниваСтся ΠΈΡ… количСство, располоТСниС, Ρ€Π°Π·ΠΌΠ΅Ρ€, Ρ„ΠΎΡ€ΠΌΠ°, ΠΊΠΎΠ½Ρ‚ΡƒΡ€Ρ‹, структура ΠΏΠ°Ρ€Π΅Π½Ρ…ΠΈΠΌΡ‹ ΠΈ Ρ‡Π°ΡˆΠ΅Ρ‡Π½ΠΎ-Π»ΠΎΡ…Π°Π½ΠΎΡ‡Π½ΠΎΠΉ систСмы. Π£Π—Π˜ позволяСт Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΈ ΠΏΠΎΡ‡Π΅ΠΊ, Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΊΠΎΠ½ΠΊΡ€Π΅ΠΌΠ΅Π½Ρ‚ΠΎΠ², Тидкостных ΠΈ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ, Ρ‚Π°ΠΊΠΆΠ΅ измСнСния вслСдствиС хроничСских ΠΈ острых патологичСских процСссов ΠΏΠΎΡ‡Π΅ΠΊ.

Щитовидная ΠΆΠ΅Π»Π΅Π·Π°

In the study of the thyroid gland, ultrasound is the leading one and allows you to determine the presence of nodes, cysts, changes in the size and structure of the gland.

Cardiology, Vascular and Cardiac Surgery

 
4D echocardiogram

Echocardiography (EchoCG) is an ultrasound diagnosis of heart disease. This study assesses the size of the heart and its individual structures (ventricles, atria, interventricular septum, thickness of the myocardium of the ventricles, atria, etc.), the presence and volume of fluid in the pericardial cavity, the state of the heart valves, and also, in the Doppler mode, blood flow in the heart and main vessels. Using special calculations and measurements, echocardiography allows you to determine the mass of the myocardium, the contractility of the heart (ejection fraction, cardiac output, etc.). Echocardiography is usually carried out through the chest (transthoracically), and there is also a transesophageal echocardiography (PE-Echocardiography) when a special endoscopic probe is placed in the esophagus. PE-EchoCG allows you to better see the heart, because the sensor is closer to the heart than with conventional echocardiography and therefore it becomes possible to use a sensor with a higher ultrasound frequency, which increases the resolution of the image. There are also special high-frequency intraoperative sensors that help during heart surgery.

The 4D EchoCG shown in the image allows you to get a live 3D image of the heart, i.e. in real time, which can also be useful, a special 4D sensor is required to carry out this technique.

Obstetrics, gynecology and prenatal diagnosis

An ultrasound study is used to study the internal genital organs of a woman, the state of the pregnant uterus, the anatomy and monitoring of fetal development.

 
Three-dimensional ultrasound examination of a 29-week-old fetus.

This effect is widely used in obstetrics, since sounds coming from the uterus are easily recorded. In the early stages of pregnancy, sound travels through the bladder. When the uterus is filled with fluid, it itself begins to conduct sound. The position of the placenta is determined by the sounds of the blood flowing through it, and after 9 - 10 weeks from the moment the fetus is formed, the heartbeat is heard. Using ultrasound, you can also determine the number of embryos or ascertain the death of the fetus.

Danger and side effects

Ultrasound is generally considered a safe way to obtain information. [7]

Diagnostic ultrasound of the fetus is also generally regarded as a safe method for use during pregnancy. This diagnostic procedure should be used only if there is good medical evidence, with the shortest possible exposure time for ultrasound, which will allow you to obtain the necessary diagnostic information, that is, on the principle of the minimum acceptable or ALARA principle.

World Health Organization Report No. 875 of 1998 supports the view that ultrasound is harmless [8] . Despite the lack of data on the dangers of ultrasound to the fetus, the Food and Drug Administration (USA) considers the advertising, sale and rental of ultrasound equipment to create a β€œfetal memory video” as inappropriate, unauthorized use of medical equipment.

Ultrasound diagnostic apparatus

An ultrasound diagnostic apparatus (ultrasound scanner) is a device designed to obtain information about the location, shape, size, structure, blood supply to organs and tissues of humans and animals [2] [4] [5] .

According to the form factor, ultrasound scanners can be divided into stationary and portable (portable) [4] [5] ; by the mid-2010s, mobile ultrasound scanners based on smartphones and tablets became widespread.

Outdated Ultrasound Classification

Depending on the functional purpose, the devices are divided into the following main types:

  • ETS - echotomoscopes (devices intended mainly for the study of the fetus, abdominal organs and small pelvis);
  • EX - echocardioscopes (devices intended for the study of the heart);
  • EES - echoenceloscopes (devices designed to study the brain);
  • EOS - echophthalmoscopes (devices intended for the study of the eye).

Depending on the time of obtaining diagnostic information, the devices are divided into the following groups:

  • C - static;
  • D - dynamic;
  • K - combined.

Device Classifications

Officially, ultrasound machines can be divided by the presence of certain scanning modes, measurement programs (packages, for example, cardiopackage - a program for echocardiographic measurements), high-density sensors (sensors with a large number of piezoelectric elements, channels and, accordingly, higher transverse resolution), additional options (3D, 4D, 5D, elastography and others).

The term β€œultrasound examination” in the strict sense can mean research in the B-mode, in particular, in Russia this is standardized and research in the A-mode is not considered an ultrasound. Devices of the old generation without B-mode are considered obsolete, but so far they are used as part of functional diagnostics.

The commercial classification of ultrasound machines basically does not have clear criteria and is determined independently by manufacturers and their dealer networks, characteristic equipment classes:

  • Primary class (B-mode)
  • Middle class (CDK)
  • High class
  • Premium class
  • Expert class

Terms, concepts, abbreviations

  • Advanced 3D is an advanced three-dimensional reconstruction program.
  • ATO - automatic image optimization, optimizes image quality with the click of a button.
  • B-Flow - visualization of blood flow directly in the B-mode without the use of Doppler methods.
  • Coded Contrast Imaging Option - coded contrast image mode, used in the study with contrast agents.
  • CodeScan is a technology for amplifying weak echo signals and suppressing unwanted frequencies (noise, artifacts) by creating an encoded sequence of pulses in a transmission with the possibility of decoding them at the reception using a programmable digital decoder. This technology allows you to achieve unrivaled image quality and improve diagnostic quality due to new scanning modes.
  • Color doppler (CFM or CFA) - color doppler (Color Doppler) - emphasis on the echogram by color (color mapping) of the nature of blood flow in the area of ​​interest. It is customary to map the blood flow to the sensor in red, from the sensor in blue. Turbulent blood flow is mapped by a blue-green-yellow color. Color doppler is used to study blood flow in vessels, in echocardiography. Other technology names include color Doppler mapping (CDC), color flow mapping (CFM) and color flow angiography (CFA). Usually using color Doppler, changing the position of the sensor, find the area of ​​interest (vessel), then use a pulsed Doppler to quantify. Color and energy doppler help in the differentiation of cysts and tumors, since the inner contents of the cyst are devoid of blood vessels and, therefore, can never have color loci.
  • DICOM - the ability to transfer raw data over the network for storage on servers and workstations, printouts and further analysis.
  • Easy 3D - a mode of surface three-dimensional reconstruction with the ability to set the level of transparency.
  • M-mode (M-mode) - a one-dimensional ultrasound scan mode (historically the first ultrasonic mode), in which anatomical structures are examined in a sweep along the time axis, is currently used in echocardiography. M-mode is used to assess the size and contractile function of the heart, the valve apparatus. Using this mode, it is possible to calculate the contractility of the left and right ventricles, to evaluate the kinetics of their walls.
  • MPEGvue - quick access to stored digital data and a simplified procedure for transferring images and video clips to CD in a standard format for later viewing and analysis on a computer.
  • Power doppler - energy doppler - a qualitative assessment of low-speed blood flow, used in the study of a network of small vessels (thyroid gland, kidneys, ovary), veins (liver, testicles), etc. It is more sensitive to the presence of blood flow than color doppler. The echogram is usually displayed in an orange palette, brighter shades indicate a greater blood flow velocity. The main drawback is the lack of information about the direction of blood flow. The use of energy doppler in three-dimensional mode allows one to judge the spatial structure of blood flow in the scan area. In echocardiography, energy doppler is rarely used, sometimes used in combination with contrast agents to study myocardial perfusion. Color and energy doppler help in the differentiation of cysts and tumors, since the inner contents of the cyst are devoid of blood vessels and, therefore, can never have color loci.
  • Smart Stress - Advanced stress echo studies. Quantitative analysis and the ability to save all scan settings for each stage of the study when visualizing various segments of the heart.
  • Tissue Harmonic Imaging (THI) is a technology for isolating the harmonic component of vibrations of internal organs caused by the passage of a basic ultrasound pulse through the body. Useful is the signal obtained by subtracting the base component from the reflected signal. The use of the 2nd harmonic is advisable for ultrasonic scanning through tissues intensively absorbing the 1st (basic) harmonic. The technology involves the use of broadband sensors and a receiving path of increased sensitivity, improving image quality, linear and contrast resolution in patients with increased weight. * Tissue Synchronization Imaging (TSI) is a specialized tool for diagnosing and evaluating cardiac dysfunctions.
  • Tissue Velocity Imaging , Tissue Doppler Imaging (TDI) - tissue doppler - mapping of tissue movement, is used in TSD and TCDC (tissue spectral and color dopplerography) modes in echocardiography to assess myocardial contractility. By studying the direction of movement of the walls of the left and right ventricles in the systole and diastole of tissue Doppler, you can find hidden zones of violation of local contractility.
  • Transducer is an acoustic transducer.
  • TruAccess is an imaging approach based on the ability to access raw ultrasound data.
  • TruSpeed is a unique set of software and hardware components for processing ultrasonic data, providing ideal image quality and the highest data processing speed in all scanning modes.
  • Virtual Convex - advanced convex image using linear and sector sensors.
  • VScan - visualization and quantification of myocardial movement.
  • Pulse Doppler (PW, HFPW) - Pulse Doppler (Pulsed Wave or PW) is used to quantify blood flow in vessels. On a vertical scan, the flow velocity at the point under investigation is displayed vertically. Flows that move to the sensor are displayed above the baseline, reverse blood flow (from the sensor) is displayed below. The maximum flow rate depends on the scanning depth, pulse frequency and has a limitation (about 2.5 m / s for heart diagnostics). High-frequency pulsed doppler (HFPW - high frequency pulsed wave) allows you to register the flow velocity of a higher speed, but also has a limitation associated with the distortion of the Doppler spectrum.
  • Constant Wave Doppler - Continuous Wave Doppler (CW) is used to quantify blood flow in vessels with high speed flows. The disadvantage of this method is that streams are recorded over the entire scanning depth. In echocardiography, with the help of a constant-wave Doppler, you can calculate the pressure in the cavities of the heart and the great vessels in one or another phase of the cardiac cycle, calculate the degree of significance of stenosis, etc. The basic CW equation is the Bernoulli equation, which allows you to calculate the pressure difference or pressure gradient. Using the equation, you can measure the pressure difference between the cameras in the norm and in the presence of pathological, high-speed blood flow.

See also

  • Ultrasound diagnostics
  • Sonoelastography

Notes

  1. ↑ 1 2 Ultrasound scanners (neopr.) . www.ob-ultrasound.net. Date of treatment June 14, 2019.
  2. ↑ 1 2 Physics of visualization of images in medicine: in 2 volumes. Volume 2. Chapter 7. Ultrasound diagnostics: Translation from English / Ed. S. Webb. - M.: Mir, 1991 .-- S. 5 - 104.
  3. ↑ Radiation diagnosis: Textbook T. 1. / Ed. G.E. Trufanova - M .: GEOTAR-Media, 2009.p.39-40. ISBN 978-5-9704-1105-6
  4. ↑ 1 2 3 4 5 6 Slyusar V.I. Ultrasound equipment on the threshold of the third millennium.// Electronics: science, technology, business. - 1999. - No. 5. - P. 50 - 53. [ [1] ]
  5. ↑ 1 2 3 4 5 6 Slyusar V.I. New in ultrasound technology: from echo tomoscopes to ultrasound microscopy. // Biomedical electronics. - 1999, no. 8. - S. 49 - 53. [ [2] ]
  6. ↑ Radiation diagnosis: Textbook T. 1. / Ed. G.E. Trufanova - M .: GEOTAR-Media, 2009.S. 40-44. ISBN 978-5-9704-1105-6
  7. ↑ Merritt, CR Ultrasound safety: what are the issues? (unspecified) // Radiology. - 1989. - 1 November ( t. 173 , No. 2 ). - S. 304-306 . - PMID 2678243 .
  8. ↑ Training in Diagnostic Ultrasound: essentials, principles and standards , 1998, p. 2 , < http://whqlibdoc.who.int/trs/WHO_TRS_875.pdf >  
Source - https://ru.wikipedia.org/w/index.php?title=Ultrasound_examination&oldid=101837676


More articles:

  • Slicer
  • Kudrevich, Victor Viktorovich
  • Pomo languages ​​- Wikipedia
  • Matsyuk-Shevchuk, Stefan Filimonovich
  • Tavastshern, Georgy Alexandrovich
  • List of tallest buildings in Mie Prefecture
  • List of tallest buildings in Wakayama Prefecture
  • Khazanovich, Yuri Yakovlevich
  • Khodzhaev, Fayzulla (screenwriter)
  • Korobova, Galina Grigoryevna

All articles

Clever Geek | 2019