Unsolved problems in mathematics : Can the Euler function be a composite number share ?
Lehmer's problem about the Euler function asks whether there is any composite number n such that the Euler function φ ( n ) divides n - 1. The problem remains unsolved.
For any prime number n we have , so that divides . DG Lemer in 1932 expressed the hypothesis that there are no composite numbers with this property [1] .
Content
Properties
- Lehmer showed that if some solution n exists, it must be an odd number, square-free number, divisible by at least seven different prime numbers (i.e. ). This number should also be the Carmichael number .
- In 1980, Cohen and Hagis proved that for any solution n of the problem, and [2] .
- In 1988, Hagis showed that if 3 divides any solution n , then and [3] .
- The number of solutions to a problem smaller than X is equal to [4] .
- In 2017, Chinese amateur Shen Lixing wrote two programs in C and found about 21,568 Carmichael numbers (the maximum prime divisor is 241921) with and 87 Carmichael numbers with less than 10 26 . None of them is a solution for the problem. According to Richard Pinch's previous results, we can say that . On the site, he incorrectly placed 21568 in column 10 27 .
Notes
- ↑ Lehmer, 1932 .
- ↑ Handbook of number theory, 2006 , p. 23.
- ↑ Guy, 2004 , p. 142
- ↑ Handbook of number theory, 2006 , p. 24
Literature
- Graeme L. Cohen, Peter Hagis, jun. If φ ( n ) divides n −1 // Nieuw Arch. Wiskd., III. Ser .. - 1980. - T. 28 . - p . 177–185 . - ISSN 0028-9825 .
- Richard K. Guy . Unsolved problems in number theory. - 3rd. - Springer-Verlag , 2004. - ISBN 0-387-20860-7 .
- Peter Hagis, jun. On the equation M ⋅φ ( n ) = n −1 // Nieuw Arch. Wiskd., IV. Ser .. - 1988. - V. 6 , no. 3 - p . 255–261 . - ISSN 0028-9825 .
- Lehmer DH On Euler's totient function // Bulletin of the American Mathematical Society . - 1932. - V. 38 . - p . 745–751 . - ISSN 0002-9904 . - DOI : 10.1090 / s0002-9904-1932-05521-5 .
- Paulo Ribenboim. The New Book of Prime Number Records. - 3rd. - New York: Springer-Verlag , 1996. - ISBN 0-387-94457-5 .
- Handbook of number theory I / József Sándor, Dragoslav S. Mitrinović, Borislav Crstici. - Dordrecht: Springer-Verlag , 2006. - ISBN 1-4020-4215-9 .
- Péter Burcsi, Sándor Czirbusz, Gábor Farkas. Computational investigation of Lehmer's totient problem // Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput .. - 2011. - V. 35 . - pp . 43–49 . - ISSN 0138-9491 .
Links
- Weisstein, Eric W. Lehmer's Totient Problem (English) on the Wolfram MathWorld website.