Clever Geek Handbook
📜 ⬆️ ⬇️

Lehmer's problem on the Euler function

Question mark2.svg
Unsolved problems in mathematics : Can the Euler function be a composite numbern {\ displaystyle n} n sharen-one {\ displaystyle n-1} n-1 ?

Lehmer's problem about the Euler function asks whether there is any composite number n such that the Euler function φ ( n ) divides n - 1. The problem remains unsolved.

For any prime number n we haveφ(n)=n-one {\ displaystyle \ varphi (n) = n-1} {\ displaystyle \ varphi (n) = n-1} , so thatφ(n) {\ displaystyle \ varphi (n)} {\ displaystyle \ varphi (n)} dividesn-one {\ displaystyle n-1} n-1 . DG Lemer in 1932 expressed the hypothesis that there are no composite numbers with this property [1] .

Content

Properties

  • Lehmer showed that if some solution n exists, it must be an odd number, square-free number, divisible by at least seven different prime numbers (i.e.ω(n)⩾7 {\ displaystyle \ omega (n) \ geqslant 7}   ). This number should also be the Carmichael number .
  • In 1980, Cohen and Hagis proved that for any solution n of the problem,n>ten20 {\ displaystyle n> 10 ^ {20}}   andω(n)⩾14 {\ displaystyle \ omega (n) \ geqslant 14}   [2] .
  • In 1988, Hagis showed that if 3 divides any solution n , thenn>ten1937042 {\ displaystyle n> 10 ^ {1937042}}   andω(n)⩾298848 {\ displaystyle \ omega (n) \ geqslant 298848}   [3] .
  • The number of solutions to a problem smaller than X is equal toO(Xone/2(log⁡X)3/four) {\ displaystyle O \ left ({X ^ {1/2} (\ log X) ^ {3/4}} \ right)}   [4] .
  • In 2017, Chinese amateur Shen Lixing wrote two programs in C and found about 21,568 Carmichael numbers (the maximum prime divisor is 241921) withω(n)=14 {\ displaystyle \ omega (n) = 14}   and 87 Carmichael numbers withω(n)=15 {\ displaystyle \ omega (n) = 15}   less than 10 26 . None of them is a solution for the problem. According to Richard Pinch's previous results, we can say thatn>ten26 {\ displaystyle n> 10 ^ {26}}   . On the site, he incorrectly placed 21568 in column 10 27 .

Notes

  1. ↑ Lehmer, 1932 .
  2. ↑ Handbook of number theory, 2006 , p. 23.
  3. ↑ Guy, 2004 , p. 142
  4. ↑ Handbook of number theory, 2006 , p. 24

Literature

  • Graeme L. Cohen, Peter Hagis, jun. If φ ( n ) divides n −1 // Nieuw Arch. Wiskd., III. Ser .. - 1980. - T. 28 . - p . 177–185 . - ISSN 0028-9825 .
  • Richard K. Guy . Unsolved problems in number theory. - 3rd. - Springer-Verlag , 2004. - ISBN 0-387-20860-7 .
  • Peter Hagis, jun. On the equation M ⋅φ ( n ) = n −1 // Nieuw Arch. Wiskd., IV. Ser .. - 1988. - V. 6 , no. 3 - p . 255–261 . - ISSN 0028-9825 .
  • Lehmer DH On Euler's totient function // Bulletin of the American Mathematical Society . - 1932. - V. 38 . - p . 745–751 . - ISSN 0002-9904 . - DOI : 10.1090 / s0002-9904-1932-05521-5 .
  • Paulo Ribenboim. The New Book of Prime Number Records. - 3rd. - New York: Springer-Verlag , 1996. - ISBN 0-387-94457-5 .
  • Handbook of number theory I / József Sándor, Dragoslav S. Mitrinović, Borislav Crstici. - Dordrecht: Springer-Verlag , 2006. - ISBN 1-4020-4215-9 .
  • Péter Burcsi, Sándor Czirbusz, Gábor Farkas. Computational investigation of Lehmer's totient problem // Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput .. - 2011. - V. 35 . - pp . 43–49 . - ISSN 0138-9491 .

Links

  • Weisstein, Eric W. Lehmer's Totient Problem (English) on the Wolfram MathWorld website.


Source - https://ru.wikipedia.org/w/index.php?title=Task_Lemera_o_function_Eyler&oldid=95279145


More articles:

  • Khlebnikov, Andrei Ilyich
  • Ptiloris intercedens
  • Perret, Frank
  • Hydrodamalis cuestae
  • Perušić (city)
  • Chervonets Peter III
  • Silverstov, George Alekseevich
  • Siranov, Kabysh
  • Flying Body
  • Sichuan Opera

All articles

Clever Geek | 2019