Clever Geek Handbook
📜 ⬆️ ⬇️

Reduced homology

The given homologies are an insignificant modification of the homology theory, which makes it possible to formulate some statements of algebraic topology , such as Alexander duality , for example, without exception.

The homology and cohomology given is usually denoted by a wave. At the same time, the difference from the usual homology appears only in the zero dimension; i.eH0(X)=H~0(X)⊕Z {\ displaystyle H_ {0} (X) = {\ tilde {H}} _ {0} (X) \ oplus \ mathbb {Z}} {\ displaystyle H_ {0} (X) = {\ tilde {H}} _ {0} (X) \ oplus \ mathbb {Z}} andHn(X)=H~n(X) {\ displaystyle H_ {n} (X) = {\ tilde {H}} _ {n} (X)} {\ displaystyle H_ {n} (X) = {\ tilde {H}} _ {n} (X)} for all positive n .

Chain Complex

In the usual definition of the homology of space, is constructed by a chain complex

⋯⟶∂n+oneCn⟶∂nCn-one⟶∂n-one⋯⟶∂2Cone⟶∂oneC0⟶∂00{\ displaystyle \ dotsb {\ overset {\ partial _ {n + 1}} {\ longrightarrow \,}} C_ {n} {\ overset {\ partial _ {n}} {\ longrightarrow \,}} C_ {n -1} {\ overset {\ partial _ {n-1}} {\ longrightarrow \,}} \ dotsb {\ overset {\ partial _ {2}} {\ longrightarrow \,}} C_ {1} {\ overset {\ partial _ {1}} {\ longrightarrow \,} C_ {0} {\ overset {\ partial _ {0}} {\ longrightarrow \,}} 0}  

and defined as factorsHn(X)=ker⁡(∂n)/im(∂n+one) {\ displaystyle H_ {n} (X) = \ ker (\ partial _ {n}) / \ mathrm {im} (\ partial _ {n + 1})}  

To determine the given homology, one should use the same definition for an augmented chain complex.

⋯⟶∂n+oneCn⟶∂nCn-one⟶∂n-one⋯⟶∂2Cone⟶∂oneC0⟶εZ→0{\ displaystyle \ dotsb {\ overset {\ partial _ {n + 1}} {\ longrightarrow \,}} C_ {n} {\ overset {\ partial _ {n}} {\ longrightarrow \,}} C_ {n -1} {\ overset {\ partial _ {n-1}} {\ longrightarrow \,}} \ dotsb {\ overset {\ partial _ {2}} {\ longrightarrow \,}} C_ {1} {\ overset {\ partial _ {1}} {\ longrightarrow \,} C_ {0} {\ overset {\ epsilon} {\ longrightarrow \,}} \ mathbb {Z} \ to 0}  

Literature

  • Vic J. W. Homology Theory. Introduction to algebraic topology. - M .: MTSNMO , 2005
  • Dold A. Lectures on algebraic topology. - M .: Mir, 1976
  • Dubrovin B. A., Novikov S. P., Fomenko A. T. Modern Geometry: Methods of Homology Theory. - M .: Science, 1984
  • Seifert G., Trelfall V. Topology. - Izhevsk: RHD, 2001
  • Lefschetz S. Algebraic topology. - M .: IL, 1949
  • Novikov P.S. Topology. - 2 ed. corrected and add. - Izhevsk: Institute for Computer Studies, 2002
  • Prasolov VV Elements of homology theory. - M .: MTSNMO , 2006
  • Switzer R. M. Algebraic topology. - homotopy and homology. - M .: Science, 1985
  • Spanier E. Algebraic topology. - M .: World, 1971
  • N. Steenrod, S. Eilenberg. Foundations of algebraic topology. - M .: Fizmatgiz, 1958
  • Fomenko A. T., Fuchs D. B. The course of homotopy topology. - M .: Science, 1989
Source - https://ru.wikipedia.org/w/index.php?title=United_homology&oldid=92076728


More articles:

  • Kasansay (stadium)
  • Academy of Arts of the Islamic Republic of Iran
  • Key 185
  • Presidential Election in Indonesia (2004)
  • Allen, Crystal
  • Canali, Saverio
  • Ariana (dim sum)
  • Gabaev, Georgiy Solomonovich
  • Hydrodamalis cuestae
  • Stepaniha (Slednevskoe Rural Settlement)

All articles

Clever Geek | 2019