Clever Geek Handbook
📜 ⬆️ ⬇️

Lach numbers

Illustration of unsigned lach numbers for n and k between 1 and 4

Lach numbers , discovered by a mathematician from Slovenia, Ivo Lah in 1955 [1] , are coefficients expressing increasing factorials in terms of decreasing factorials .

Unsigned Lach numbers have interesting meanings in combinatorics - they reflect the number of ways in which a set of n elements can be divided into k nonempty ordered subsets. Lach numbers are related to Stirling numbers .

Unsigned Lach numbers (sequence A105278 in OEIS ):

L(n,k)=(n-onek-one)n!k!.{\ displaystyle L (n, k) = {n-1 \ choose k-1} {\ frac {n!} {k!}}.} {\ displaystyle L (n, k) = {n-1 \ choose k-1} {\ frac {n!} {k!}}.}

Signed Laha numbers (sequence A008297 in OEIS ):

L′(n,k)=(-one)n(n-onek-one)n!k!.{\ displaystyle L '(n, k) = (- 1) ^ {n} {n-1 \ choose k-1} {\ frac {n!} {k!}}.} {\ displaystyle L '(n, k) = (- 1) ^ {n} {n-1 \ choose k-1} {\ frac {n!} {k!}}.}

L ( n , 1) is always n ! In the above interpretation of partitioning the set {1, 2, 3} into 1, the set can be implemented in 6 ways:

{(1, 2, 3)}, {(1, 3, 2)}, {(2, 1, 3)}, {(2, 3, 1)}, {(3, 1, 2)}, {(3, 2, 1)}

L (3, 2) corresponds to 6 partitions into two ordered sets:

{(1), (2, 3)}, {(1), (3, 2)}, {(2), (1, 3)}, {(2), (3, 1)}, {( 3), (1, 2)} or {(3), (2, 1)}

L ( n , n ) is always equal to 1, because, for example, splitting the set {1, 2, 3} into 3 nonempty subsets leads to subsets of length 1.

{(1), (2), (3)}

When using the Karamat-Knuth notation for Stirling numbers, it was proposed to use the following alternative notation for Lach numbers:

L(n,k)=⌊nk⌋.{\ displaystyle L (n, k) = \ left \ lfloor {\ begin {matrix} n \\ k \ end {matrix}} \ right \ rfloor.} {\ displaystyle L (n, k) = \ left \ lfloor {\ begin {matrix} n \\ k \ end {matrix}} \ right \ rfloor.}

Content

  • 1 Rising and decreasing factorials
  • 2 Identities and Relationships
  • 3 table of values
  • 4 See also
  • 5 notes
  • 6 Literature

Rising and decreasing factorials

Let bex(n) {\ displaystyle x ^ {(n)}}   denotes an increasing factorialx(x+one)(x+2)⋯(x+n-one) {\ displaystyle x (x + 1) (x + 2) \ cdots (x + n-1)}   , but(x)n {\ displaystyle (x) _ {n}}   - decreasing factorialx(x-one)(x-2)⋯(x-n+one) {\ displaystyle x (x-1) (x-2) \ cdots (x-n + 1)}   .

Thenx(n)=∑k=onenL(n,k)(x)k {\ displaystyle x ^ {(n)} = \ sum _ {k = 1} ^ {n} L (n, k) (x) _ {k}}   and(x)n=∑k=onen(-one)n-kL(n,k)x(k). {\ displaystyle (x) _ {n} = \ sum _ {k = 1} ^ {n} (- 1) ^ {nk} L (n, k) x ^ {(k)}.}  

For example,x(x+one)(x+2)=6x+6x(x-one)+onex(x-one)(x-2). {\ displaystyle x (x + 1) (x + 2) = {\ color {red} 6} x + {\ color {red} 6} x (x-1) + {\ color {red} 1} x (x -1) (x-2).}  

Compare with the third row of the value table.

Identities and Relationships

L(n,k)=(n-onek-one)n!k!=(nk)(n-one)!(k-one)!=(nk)(n-onek-one)(n-k)!{\ displaystyle L (n, k) = {n-1 \ choose k-1} {\ frac {n!} {k!}} = {n \ choose k} {\ frac {(n-1)!} {(k-1)!}} = {n \ choose k} {n-1 \ choose k-1} (nk)!}  
L(n,k)=n!(n-one)!k!(k-one)!⋅one(n-k)!=(n!k!)2kn(n-k)!{\ displaystyle L (n, k) = {\ frac {n! (n-1)!} {k! (k-1)!}} \ cdot {\ frac {1} {(nk)!}} = \ left ({\ frac {n!} {k!}} \ right) ^ {2} {\ frac {k} {n (nk)!}}}  
L(n,k+one)=n-kk(k+one)L(n,k).{\ displaystyle L (n, k + 1) = {\ frac {nk} {k (k + 1)}} L (n, k).}  
L(n,k)=∑j[nj]{jk},{\ displaystyle L (n, k) = \ sum _ {j} \ left [{n \ atop j} \ right] \ left \ {{j \ atop k} \ right \},}   Where[nj] {\ displaystyle \ left [{n \ atop j} \ right]}   - Stirling numbers of the first kind , and{jk} {\ displaystyle \ left \ {{j \ atop k} \ right \}}   - Stirling numbers of the second kind . If you accept thatL(0,0)=one {\ displaystyle L (0,0) = 1}   andL(n,k)=0 {\ displaystyle L (n, k) = 0}   atk>n {\ displaystyle k> n}   .
L(n,one)=n!{\ displaystyle L (n, 1) = n!}  
L(n,2)=(n-one)n!/2{\ displaystyle L (n, 2) = (n-1) n! / 2}  
L(n,3)=(n-2)(n-one)n!/12{\ displaystyle L (n, 3) = (n-2) (n-1) n! / 12}  
L(n,n-one)=n(n-one){\ displaystyle L (n, n-1) = n (n-1)}  
L(n,n)=one{\ displaystyle L (n, n) = 1}  
∑n≥kL(n,k)xnn!=onek!(xone-x)k{\ displaystyle \ sum _ {n \ geq k} L (n, k) {\ frac {x ^ {n}} {n!}} = {\ frac {1} {k!}} \ left ({\ frac {x} {1-x}} \ right) ^ {k}}  

Value Table

Lach value table:

n╲k{\ displaystyle _ {n} \! \! \ diagdown \! \! ^ {k}}  one23four5678910eleven12
oneone
22one
366one
four243612one
5120240120twentyone
672018001200300thirtyone
750401512012600420063042one
8403201411201411205880011760117656one
93628801451520169344084672021168028224201672one
103628800163296002177280012700800381024063504060480324090one
eleven3991680019958400029937600019958400069854400139708801663200118804950110one
1247900160026345088004390848000329313600013172544003073593604390848039204002178007260132one

See also

  • Stirling numbers
  • Pascal Matrix

Notes

  1. ↑ Riordan, 1958 .

Literature

  • John Riordan. Introduction to Combinatorial Analysis . - Princeton University Press, 1958. - ISBN 978-0-691-02365-6 . The article was reprinted in 1980, and one more time in 2002 (Dover Publications)
Source - https://ru.wikipedia.org/w/index.php?title=Lach numbers&oldid = 97129291


More articles:

  • Amede Lighthouse
  • Coat of arms of Almaty
  • Coscull, Aurora Wilhelmina
  • Marvel vs. Capcom (series of games)
  • Kristin, Virginia
  • Robucci-Nargiso, Maria-Giuseppa
  • Construction and Management Simulator
  • Selajdzic, Amra
  • Kinzhibaev, Karim Shakhnazarovich
  • Pavlinov, Valentin Nikolaevich

All articles

Clever Geek | 2019