Clever Geek Handbook
📜 ⬆️ ⬇️

Firuzbeht hypothesis

Spacing function between prime numbers

The Firuzbaht [1] [2] hypothesis is a hypothesis about the distribution of prime numbers . The hypothesis is named after the Iranian mathematician Farida Firuzbeht from the university in Isfahan, who expressed it in 1982.

Content

Hypothesis Approval

The hypothesis states thatpnone/n {\ displaystyle p_ {n} ^ {1 / n}}   (Wherepn {\ displaystyle p_ {n}}   - n- th prime number) is a strictly decreasing function of n , i.e.

pn+onen+one<pnn{\ displaystyle {\ sqrt [{n + 1}] {p_ {n + 1}}} <{\ sqrt [{n}] {p_ {n}}}}   for alln≥one. {\ displaystyle n \ geq 1.}  

Equivalent to:

pn+one<pnone+onen{\ displaystyle p_ {n + 1} <p_ {n} ^ {1 + {\ frac {1} {n}}}}   for alln≥one, {\ displaystyle n \ geq 1,}  

see sequences A182134 , A246782 .

Confirmation of hypothesis

Using the table of maximum intervals , Farida Firuzbeht tested her hypothesis to 4,444⋅10 12 [2] . With the extended max interval table, the hypothesis was tested for all primes up totennineteen {\ displaystyle 10 ^ {19}}   [3] [4] .

Relationship with other hypotheses

If the hypothesis is true, then the function of the intervals between prime numbersgn=pn+one-pn {\ displaystyle g_ {n} = p_ {n + 1} -p_ {n}}   must satisfy the inequality [5] :

gn<(log⁡pn)2-log⁡pn{\ displaystyle g_ {n} <(\ log p_ {n}) ^ {2} - \ log p_ {n}}   for alln>four. {\ displaystyle n> 4.}  

Moreover [6] ,

gn<(log⁡pn)2-log⁡pn-one{\ displaystyle g_ {n} <(\ log p_ {n}) ^ {2} - \ log p_ {n} -1}   for alln>9, {\ displaystyle n> 9,}  

see also sequence A111943 . The hypothesis is among the strongest hypotheses about upper bounds for the intervals between prime numbers; it is even somewhat stronger than Cramer and Shanks hypotheses [4] . The hypothesis implies the strong form of Cramer's hypothesis , and therefore it is incompatible with the heuristics of Granville, Pints, [7] [8] [9] and Meier [10] [11] , in which

gn>2-εeγ(log⁡pn)2{\ displaystyle g_ {n}> {\ frac {2- \ varepsilon} {e ^ {\ gamma}}} (\ log p_ {n}) ^ {2}}  

meets infinitely many times for anyε>0, {\ displaystyle \ varepsilon> 0,}   Whereγ {\ displaystyle \ gamma}   means Euler's constant - Mascheroni .

Two related hypotheses (see comments on the sequence A182514 )

(log⁡(pn+one)log⁡(pn))n<e,{\ displaystyle \ left ({\ frac {\ log (p_ {n + 1})} {{log (p_ {n})}} \ right) ^ {n} <e,}  

which is somewhat weaker and

(pn+onepn)n<nlog⁡(n){\ displaystyle \ left ({\ frac {p_ {n + 1}} {p_ {n}}} \ right) ^ {n} <n \ log (n)}   for alln>five, {\ displaystyle n> 5,}  

which is stronger.

See also

  • The prime number distribution theorem
  • Andrits Hypothesis
  • Legendre Hypothesis
  • Opperman's hypothesis
  • Cramer's Hypothesis

Notes

  1. ↑ Ribenboim, 2004 , p. 185.
  2. ↑ 1 2 Rivera, 2012 .
  3. ↑ Gaps between consecutive primes
  4. ↑ 1 2 Kourbatov, 2018 .
  5. ↑ Sinha, 2010 , p. 1–10.
  6. ↑ Kourbatov, 2015 .
  7. ↑ Granville, 1995 , p. 12–28.
  8. ↑ Granville, 1995 , p. 388–399.
  9. ↑ Pintz, 2007 , p. 232–471.
  10. ↑ Adleman, McCurley, 1994 , p. 291–322.
  11. ↑ Maier, 1985 , p. 221-225.

Literature

  • Paulo Ribenboim. The Little Book of Prizes Second Edition. - 2004. - ISBN 0-387-20169-6 .
  • Carlos Rivera. Conjecture 30. The Firoozbakht Conjecture . - 2012.
  • Granville A. Harald Cramér and the distribution of prime numbers // Scandinavian Actuarial Journal. - 1995. - Vol. one.
  • Andrew Granville. Unexpected irregularities in the distribution of prime numbers // Proceedings of the International Congress of Mathematicians. - 1995. - Vol. one.
  • Janos Pintz. Cramér vs. Cramér: On Cramér's probabilistic model for primes // Funct. Approx. Comment. Math .. - 2007. - V. 37 , no. 2
  • Leonard Adleman , Kevin McCurley. Theoretical Complexity, II. Algorithmic number theory (Ithaca, NY, 1994) ,. - Berlin: Springer, 1994. - T. 877. - (Lecture Notes in Comput. Sci.).
  • Helmut Maier. Primes in short intervals // The Michigan Mathematical Journal. - 1985. - V. 32 , no. 2 - ISSN 0026-2285 . - DOI : 10.1307 / mmj / 1029003189 .
  • Alexei Kourbatov. Prime Gaps: Firoozbakht Conjecture . - 2018.
  • Nilotpal Kanti Sinha. Cramer's conjecture. - 2010. - arXiv : 1010.1399 .
  • Alexei Kourbatov. Upper bounds for the gaps related to Firoozbakht's conjecture // Journal of Integer Sequences. - 2015. - Vol. 18. - arXiv : 1506.03042 .

Links

  • Hans Riesel. Prime Numbers and Computer Methods for Factorization, Second Edition. - Birkhauser, 1985. - ISBN 3-7643-3291-3 .
Source - https://ru.wikipedia.org/w/index.php?title=Gypoteza_Firuzbeht&oldid=96039744


More articles:

  • Tyagunov, Mikhail Georgievich
  • Zary (Selivanovsky district)
  • Lyavdinka (village)
  • Tarnierskoe swamp
  • Stefchik, Frantisek
  • Yasga
  • Forge in Smolensk
  • Hanas, Jan
  • Raster Animation
  • Warsaw (Altai Krai)

All articles

Clever Geek | 2019