Clever Geek Handbook
📜 ⬆️ ⬇️

Rassias hypothesis

The Rassias hypothesis is an open problem with primes . The hypothesis was expressed by Michael T. Rassias when he was preparing for the International Mathematical Olympiad [1] [2] [3] [4] [5] [6] [7] . The hypothesis states the following:

For any simplep>2 {\ displaystyle p> 2} p> 2 there are two simplepone<p2 {\ displaystyle p_ {1} <p_ {2}} {\ displaystyle p_ {1} <p_ {2}} such that
p=pone+p2+onepone{\ displaystyle p = {\ frac {p_ {1} + p_ {2} +1} {p_ {1}}}} {\ displaystyle p = {\ frac {p_ {1} + p_ {2} +1} {p_ {1}}}}

Relationship with other open issues

Rassias's hypothesis can be formulated in equivalent form:

For any primep>2 {\ displaystyle p> 2}   there are simplepone<p2 {\ displaystyle p_ {1} <p_ {2}}   such that
p2=(p-one)pone-one.{\ displaystyle p_ {2} = (p-1) p_ {1} -1.}  

This reformulation shows that the hypothesis is a combination of the problem of generalized numbers Sophie Germain

p2=2apone-one{\ displaystyle p_ {2} = 2ap_ {1} -1}  

with the additional condition that2a+one {\ displaystyle 2a + 1}   should also be simple [3] [4] . This makes the hypothesis a special case of the Dickson hypothesis . Note that the Dixon conjecture (and its generalization, Conjecture H ) appeared before the Rassias conjecture. See the Preface by Pre-Michailescu [7] for a comparison of Rassias's hypothesis with other well-known hypotheses and open problems in number theory .

Cunningham sequences are also associated with the hypothesis, i.e. sequences of simplepi+one=mpi+n,i=one,2,...,k-one, {\ displaystyle p_ {i + 1} = mp_ {i} + n, \ i = 1,2, \ ldots, k-1,}   for fixed mutually prime positive integersm,n>one {\ displaystyle m, n> 1}   . Unlike the breakthrough of Ben Green and Terence Tao [8] on simple arithmetic progressions , the results on large Cunningham sequences are not known. Rassias's hypothesis is equivalent to the existence of Cunningham sequences with parameters2a,-one {\ displaystyle 2a, -1}   fora {\ displaystyle a}   such that2a-one=p {\ displaystyle 2a-1 = p}   is simple [3] [4] .

Notes

  1. ↑ Andreescu, Andrica, 2009 , p. 12.
  2. ↑ Balzarotti, Lava, 2013 , p. 140–141.
  3. ↑ 1 2 3 Mihăilescu, 2011 , p. 45–47.
  4. ↑ 1 2 3 Mihăilescu, 2014 , p. 13-16.
  5. ↑ Rassias, 2005 , p. 885.
  6. ↑ Rassias, 2007 , p. 47.
  7. ↑ 1 2 Rassias, 2011 .
  8. ↑ Green, Tao, 2008 , p. 481-547.

Literature

  • Andreescu T., Andrica D. Number Theory: Structures, Examples and Problems. - Birkhäuser, Boston, Basel, 2009 .-- S. 12.
  • Balzarotti G., Lava PP La Derivata Arithmetica. - Editore Ulrico Hoepli Milano, 2013. - S. 140–141.
  • Preda Mihăilescu. Book Review // Newsletter of the European Math. Soc .. - 2011 .-- T. 79 . - S. 45–47 .
  • Preda Mihăilescu. On some conjectures in Additive Number Theory // Newsletter of the European Math. Soc .. - 2014 .-- T. 92 . - S. 13–16 .
  • Rassias M. Th. Open Problem No. 1825 // Octogon Mathematical Magazine. - 2005 .-- T. 13 . - S. 885 .
  • Rassias M. Th. Problem 25 // Newsletter of the European Math. Soc .. - 2007 .-- T. 65 . - S. 47 .
  • Rassias M. Th. Problem-Solving and Selected Topics in Number Theory. - Springer, 2011 .-- C. xi – xiii, 82.
  • Ben Green, Terence Tao. The primes contain arbitrarily long arithmetic progressions // Annals of Mathematics. - 2008 .-- T. 2 . - S. 481-547 . - DOI : 10.4007 / annals.2008.167.481 .
Source - https://ru.wikipedia.org/w/index.php?title=Rassias hypothesis&oldid = 91629771


More articles:

  • Rodak, Pavel
  • List of tallest buildings in Akita Prefecture
  • List of tallest buildings in Fukushima Prefecture
  • Deser, Stanley
  • Köbner, Henry
  • Creative association "420"
  • Mountain Breeze
  • Memory Pool
  • Hemmingsson, Nina
  • Crid, Anneresli

All articles

Clever Geek | 2019