Clever Geek Handbook
📜 ⬆️ ⬇️

Thin group (theory of finite groups)

A thin group is a finite group in which Sylow p -subgroups of 2-local subgroups are cyclic for any odd prime number p . Informally, these are groups that resemble a type 1 rank- type gupp over a finite field of characteristic 2.

Janko [1] defined thin groups and classified from them those that have characteristic type 2, in which all 2-local subgroups are solvable. Thin simple groups classified by Aschbacher [2] [3] . The list of finite simple thin groups consists of the following elements:

  • Projective special linear groupsPSL2(q) {\ displaystyle \ mathrm {PSL} _ {2} (q)} {\ displaystyle \ mathrm {PSL} _ {2} (q)} ,PSL3(p) {\ displaystyle \ mathrm {PSL} _ {3} (p)} {\ displaystyle \ mathrm {PSL} _ {3} (p)} forp=one+2a3b {\ displaystyle p = 1 + 2 ^ {a} 3 ^ {b}} {\ displaystyle p = 1 + 2 ^ {a} 3 ^ {b}} ,PSL3(four) {\ displaystyle \ mathrm {PSL} _ {3} (4)} {\ displaystyle \ mathrm {PSL} _ {3} (4)}
  • Projective special unitary groupsPSU3(p) {\ displaystyle \ mathrm {PSU} _ {3} (p)} {\ displaystyle \ mathrm {PSU} _ {3} (p)} forp=one+2a3b {\ displaystyle p = 1 + 2 ^ {a} 3 ^ {b}} {\ displaystyle p = 1 + 2 ^ {a} 3 ^ {b}} andb=0 {\ displaystyle b = 0} {\ displaystyle b = 0} or 1,PSU3(2n) {\ displaystyle \ mathrm {PSU} _ {3} (2 ^ {n})} {\ displaystyle \ mathrm {PSU} _ {3} (2 ^ {n})}
  • Sz (2 n )
  • Tits Group 2 F 4 (2)
  • Group Steinberg 3 D 4 (2)
  • Mathieu Group M 11

See also

Notes

  1. ↑ Janko, 1972 .
  2. ↑ Aschbacher, 1976 .
  3. ↑ Aschbacher, 1978 .

Literature

  • Michael Aschbacher. Thin finite simple groups // Bulletin of the American Mathematical Society . - 1976. - V. 82 , no. 3 - p . 484 . - ISSN 0002-9904 . - DOI : 10.1090 / S0002-9904-1976-14063-3 .
  • Michael Aschbacher. Thin finite simple groups // Journal of Algebra . - 1978. - V. 54 , no. 1 . - p . 50–152 . - ISSN 0021-8693 . - DOI : 10.1016 / 0021-8693 (78) 90022-4 .
  • Ashbakher M. Finite simple groups and their classification // UMN. - T. 36 , no. 2 (218) . - p . 141-172 .
  • Zvonimir Janko. Nonsolvable finite groups 2-local subgroups are solvable. I // Journal of Algebra . - 1972. - T. 21 . - p . 458-517 . - ISSN 0021-8693 . - DOI : 10.1016 / 0021-8693 (72) 90009-9 .
Source - https://ru.wikipedia.org/w/index.php?title=Thin_Group_(finite_group theory )&oldid = 96982101


More articles:

  • International Choreographer Competition Ballet Fest
  • Mickey van der Hart
  • Kissling, Connie
  • Ilic, Sanya
  • Pinso, Michelle
  • Balian Ibelin (Senor Arsufa)
  • Richmond, William Blake
  • Viktorov, Denis Borisovich
  • Montgomery, Sai
  • Born to be King

All articles

Clever Geek | 2019