Clever Geek Handbook
📜 ⬆️ ⬇️

Inoue surface

The Inoue surface is some complex surface . The surfaces are named after Masahit Inoue, who cited the first non-trivial examples of Kodaira class VII surfaces in 1974 [1] .

Inoue surfaces are not Kähler varieties .

Content

Inoue surfaces with b 2 = 0

Inoue brought three families of surfaces, S 0 , S + and S - , which are compact factorsC×H {\ displaystyle {\ mathbb {C}} \ times H}   (products of the complex plane on the half-plane). These Inoue surfaces are . They are obtained as a factor.C×H {\ displaystyle {\ mathbb {C}} \ times H}   on a solvable discrete group that acts holomorphically onC×H {\ displaystyle {\ mathbb {C}} \ times H}   .

All solvable surfaces that Inoue built have a second Betty number.b2=0 {\ displaystyle b_ {2} = 0}   . These surfaces are , which means that for thembone=one {\ displaystyle b_ {1} = 1}   and the is equal to-∞ {\ displaystyle - \ infty}   . As Bogomolov [2] , Li- Yau [3] and Telemann [4] proved, any with b 2 = 0 is a Hopf surface or a solvable variety of inoue type.

These surfaces have no meromorphic functions, as well as curves.

K. Hasegawa [5] gave a list of all complex two-dimensional soluble manifolds. These are the complex torus , the hyperelliptic surface , and the Inoue surface S 0 , S + and S - .

Inoue surfaces are constructed explicitly, as described below [5] .

Type S Surfaces 0

Let beϕ {\ displaystyle \ phi}   will be an integer 3 × 3 matrix with two complex eigenvaluesα,α¯ {\ displaystyle \ alpha, {\ bar {\ alpha}}}   and real eigenvalue c> 1 , while|α|2c=one {\ displaystyle | \ alpha | ^ {2} c = 1}   . Thenϕ {\ displaystyle \ phi}   reversible in integers and defines the action of the groupZ {\ displaystyle {\ mathbb {Z}}}   integers onZ3 {\ displaystyle {\ mathbb {Z}} ^ {3}}   . Let beΓ: =Z3⋊Z {\ displaystyle \ Gamma: = {\ mathbb {Z}} ^ {3} \ rtimes {\ mathbb {Z}}}   . This group is a lattice in a soluble Lie group.

R3⋊R=(C×R)⋊R{\ displaystyle {\ mathbb {R}} ^ {3} \ rtimes {\ mathbb {R}} = ({\ mathbb {C}} \ times {\ mathbb {R}}) \ rtimes {\ mathbb {R} }}   ,

acting onC×R {\ displaystyle {\ mathbb {C}} \ times {\ mathbb {R}}}   while the group acts on(C×R) {\ displaystyle ({\ mathbb {C}} \ times {\ mathbb {R}})}   -part by hyphenation, and on⋊R {\ displaystyle \ rtimes {\ mathbb {R}}}   -part like(z,r)↦(αtz,ctr) {\ displaystyle (z, r) \ mapsto (\ alpha ^ {t} z, c ^ {t} r)}   .

We extend this action byC×H=C×R×R>0 {\ displaystyle {\ mathbb {C}} \ times H = {\ mathbb {C}} \ times {\ mathbb {R}} \ times {\ mathbb {R}} ^ {> 0}}   by puttingv↦elog⁡ctv {\ displaystyle v \ mapsto e ^ {\ log ct} v}   where t is a parameter⋊R {\ displaystyle \ rtimes {\ mathbb {R}}}   - group partsR3⋊R {\ displaystyle {\ mathbb {R}} ^ {3} \ rtimes {\ mathbb {R}}}   . The action is trivial on the factor.R3 {\ displaystyle {\ mathbb {R}} ^ {3}}   byR>0 {\ displaystyle {\ mathbb {R}} ^ {> 0}}   . This action is obviously holomorphic and the factorC×H/Γ {\ displaystyle {\ mathbb {C}} \ times H / \ Gamma}   called the Inoue surface of type S 0 .

The Inoue surface S 0 is determined by the choice of the integer matrixϕ {\ displaystyle \ phi}   , with the above limitations. There is a countable number of such surfaces.

S + Surfaces

Let n be a positive integer, andΛn {\ displaystyle \ Lambda _ {n}}   - group of upper triangular matrices

[onexzn0oney00one],{\ displaystyle {\ begin {bmatrix} 1 & x & {\ frac {z} {n}} \\ 0 & 1 & y \\ 0 & 0 & 1 \ end {bmatrix}},}   ,

where x, y, z are integers. Consider an automorphismΛn {\ displaystyle \ Lambda _ {n}}   which we denoteϕ {\ displaystyle \ phi}   . Group factorΛn {\ displaystyle \ Lambda _ {n}}   in its center C isZ2 {\ displaystyle {\ mathbb {Z}} ^ {2}}   . Let's pretend thatϕ {\ displaystyle \ phi}   acts onΛn/C=Z2 {\ displaystyle \ Lambda _ {n} / C = {\ mathbb {Z}} ^ {2}}   as a matrix with two positive real eigenvalues a, b , with ab = 1.

Consider a soluble groupΓn: =Λn⋊Z {\ displaystyle \ Gamma _ {n}: = \ Lambda _ {n} \ rtimes {\ mathbb {Z}}}   , withZ {\ displaystyle {\ mathbb {Z}}}   acting onΛn {\ displaystyle \ Lambda _ {n}}   , asϕ {\ displaystyle \ phi}   . Identifying the group of upper triangular matrices withR3 {\ displaystyle {\ mathbb {R}} ^ {3}}   we will get actionΓn {\ displaystyle \ Gamma _ {n}}   onR3=C×R {\ displaystyle {\ mathbb {R}} ^ {3} = {\ mathbb {C}} \ times {\ mathbb {R}}}   . Define actionΓn {\ displaystyle \ Gamma _ {n}}   onC×H=C×R×R>0 {\ displaystyle {\ mathbb {C}} \ times H = {\ mathbb {C}} \ times {\ mathbb {R}} \ times {\ mathbb {R}} ^ {> 0}}   withΛn {\ displaystyle \ Lambda _ {n}}   acting trivially onR>0 {\ displaystyle {\ mathbb {R}} ^ {> 0}}   -part andZ {\ displaystyle {\ mathbb {Z}}}   acts likev↦etlog⁡bv {\ displaystyle v \ mapsto e ^ {t \ log b} v}   . The same arguments as for Inoue surfaces of typeS0 {\ displaystyle S ^ {0}}   , show that this action is holomorphic. FactorC×H/Γn {\ displaystyle {\ mathbb {C}} \ times H / \ Gamma _ {n}}   called inoue surface typeS+ {\ displaystyle S ^ {+}}   .

Type S Surfaces -

Inoue type surfacesS- {\ displaystyle S ^ {-}}   are defined in the same way as S + , but the two eigenvalues a, b of the automorphismϕ {\ displaystyle \ phi}   acting onZ2 {\ displaystyle {\ mathbb {Z}} ^ {2}}   , have opposite signs and the equality ab = −1 holds. Since the square of such an endomorphism defines an Inoue surface of type S + , the Inoue surface of type S - has an unbranched double covering of type S + .

Parabolic and hyperbolic surfaces of Inoue

The Inoue parabolic and hyperbolic surfaces are Kodaira class VII surfaces that Iku Nakamura defined in 1984 [6] . They are not solvable varieties. These surfaces have a positive second Betty number. The surfaces have spherical shells and can be deformed into a bulging Hopf surface .

Inoue parabolic surfaces contain a cycle of rational curves with 0 self-intersections and an elliptic curve. They are a special case of Enoki surfaces that have a cycle of rational curves with zero self-intersections but no elliptic curve. The Inoue semisurface contains a cycle C of rational curves and is a factor of the hyperbolic Inoue surface with two cycles of rational curves.

Inoue hyperbolic surfaces are class VII 0 surfaces with two cycles of rational curves [7] .

Notes

  1. ↑ Inoue, 1974 , p. 269-310.
  2. ↑ Bogomolov, 1976 , p. 273-288.
  3. ↑ Li, Yau, 1987 , p. 560-573.
  4. ↑ Teleman, 1994 , p. 253-264.
  5. ↑ 1 2 Hasegawa, 2005 , p. 749-767.
  6. ↑ Nakamura, 1984 , p. 393-443.
  7. ↑ Nakamura, 2008 .

Literature

  • Keizo Hasegawa. Complex and Kahler structures on Compact Solvmanifolds // J. Symplectic Geom .. - 2005. - Vol. 3 , no. 4 - p . 749-767 .
  • Bogomolov F. A. Classification of class surfaces of class VII 0 with b 2 = 0 // Izv. Academy of Sciences of the USSR. - 1976. - V. 40 , no. 2
  • Li J., Yau S., T. Hermitian Yang-Mills connections on non-Kahler manifolds // Math. aspects of string theory (San Diego, Calif., 1986). - Adv. Ser. Math Phys .. - World Scientific Publishing, 1987. - T. 1.
  • Nakamura I. On surfaces of class VII 0 with curves // Inventiones math .. - 1984. - T. 78 .
  • Inoue M. On surfaces of class VII 0 // Inventiones math .. - 1974. - T. 24 .
  • Teleman A. Projectively flat surfaces and Bogomolov's Theorem on Class VII 0 -surfaces // Int. J. Math .. - 1994. - V. 5 , no. 2
  • Nakamura I. Survey on VII 0 surfaces // Recent Developments in NonKaehler Geometry . - Sapporo, 2008.
Source - https://ru.wikipedia.org/w/index.php?title=Surface_Inoue&oldid=96461791


More articles:

  • Zaykino (Vladimir region)
  • Stables Mantashev
  • Perez, Vincent
  • Filino (Kovrovsky District)
  • Husum Thaler
  • Thirst, the war for water
  • Songs (TV Show)
  • Three-way Sansevieria
  • Ozharovsky, Vladimir Fedorovich
  • Kamenka (Belevsky district)

All articles

Clever Geek | 2019