Clever Geek Handbook
📜 ⬆️ ⬇️

Bogomolov Inequality - Miaoki - Yau

Bogomolov-Miaoki-Yau inequality is inequality

cone2⩽3c2{\ displaystyle c_ {1} ^ {2} \ leqslant 3c_ {2}} {\ displaystyle c_ {1} ^ {2} \ leqslant 3c_ {2}}

between compact complex surfaces of general form . The main interest in this inequality is the possibility to limit the possible topological types of the real 4-manifold under consideration. Inequality was proved independently by Yau [1] [2] and Miaoki [3] , after Van de Ven [4] and Fyodor Bogomol [5] proved weaker versions of inequality with constants 8 and 4 instead of 3.

Borel and Hirzebruch showed that inequality cannot be improved by finding infinitely many cases in which equality holds. The inequality is not true for positive characteristics — Leng [6] and Easton [7] gave examples of surfaces with characteristic p , such as the , for which the inequality is not satisfied.

Content

Inequality

Usually the Bogomolov – Miaoki – Yau inequality is formulated as follows.

Let X be a compact complex surface of a , and letcone=cone(X) {\ displaystyle c_ {1} = c_ {1} (X)}   andc2=c2(X) {\ displaystyle c_ {2} = c_ {2} (X)}   - the first and second complex tangent surface stratification. Then

cone2⩽3c2.{\ displaystyle c_ {1} ^ {2} \ leqslant 3c_ {2}.}  

Moreover, if equality holds, then X is a factor of the ball. The last statement is a consequence of Yau's approach in differential geometry, which is based on his resolution .

Insofar asc2(X)=e(X) {\ displaystyle c_ {2} (X) = e (X)}   is a topological characteristic of Euler , and bycone2(X)=2e(X)+3σ(X) {\ displaystyle c_ {1} ^ {2} (X) = 2e (X) +3 \ sigma (X)}   whereσ(X) {\ displaystyle \ sigma (X)}   is the signature of the intersection form on the second cohomology, the Bogomolov – Miaoki – Yau inequality can be rewritten as a restriction on the topological type of a general surface:

σ(X)⩽one3e(X),{\ displaystyle \ sigma (X) \ leqslant {\ frac {1} {3}} e (X),}  

and moreover ifσ(X)=(one/3)e(X) {\ displaystyle \ sigma (X) = (1/3) e (X)}   The universal cover is a ball.

Together with inequality, the Bogomolov – Miaoki – Yau inequality establishes boundaries when searching for complex surfaces. Consideration of topological types that can be implemented as complex surfaces is called . See the article .

Surfaces with c 1 2 = 3 c 2

Let X be a surface of general type withcone2=3c2 {\ displaystyle c_ {1} ^ {2} = 3c_ {2}}   , so that in the inequality of Bogomolov - Miaoki - Yau equality takes place. For such surfaces, Yau [1] proved that X is isomorphic to the unit ball factor inC2 {\ displaystyle {\ mathbb {C}} ^ {2}}   by infinite discrete group. Examples of surfaces for which equality holds are difficult to find. Borel [8] showed that there are infinitely many valuescone2=3c2 {\ displaystyle c_ {1} ^ {2} = 3c_ {2}}   for which surfaces exist. Mumford [9] found a false projective plane withcone2=3c2=9 {\ displaystyle c_ {1} ^ {2} = 3c_ {2} = 9}   which has the lowest possible value becausecone2+c2 {\ displaystyle c_ {1} ^ {2} + c_ {2}}   always divisible by 12, while Prasad and Yen [10] [11] , as well as Cartwright and Steger [12] showed that there are exactly 50 false projective surfaces.

Bartel, Hirzebruch, and Höfer [13] gave a method of searching for examples, which, in particular, gives surfaces X withcone2=3c2=32fivefour {\ displaystyle c_ {1} ^ {2} = 3c_ {2} = 3 ^ {2} 5 ^ {4}}   . Ishida [14] found the factor of such a surface withcone2=3c2=45 {\ displaystyle c_ {1} ^ {2} = 3c_ {2} = 45}   and if we take the unbranched coverage of this factor, we get examples withcone2=3c2=45 {\ displaystyle c_ {1} ^ {2} = 3c_ {2} = 45}   for any positive k . Cartwright and Steger [12] found examples withcone2=3c2=9n {\ displaystyle c_ {1} ^ {2} = 3c_ {2} = 9n}   for any positive integer n .

Notes

  1. ↑ 1 2 Yau, 1977 .
  2. ↑ Yau, 1978 .
  3. ↑ Miyaoka, 1977 .
  4. ↑ Van de Ven, 1966 .
  5. ↑ Bogomolov, 1978 .
  6. ↑ Lang, 1983 .
  7. ↑ Easton, 2008 .
  8. ↑ Borel, 1963 .
  9. ↑ Mumford, 1979 .
  10. ↑ Prasad, Yeung, 2007 .
  11. ↑ Prasad, Yeung, 2010 .
  12. ↑ 1 2 Cartwright, Steger, 2010 , p. 11–13.
  13. ↑ Barthel, Hirzebruch, Höfer, 1987 .
  14. ↑ Ishida, 1988 .

Literature

  • Donald I. Cartwright, Tim Steger. Enumeration of the 50 fake projective planes // Comptes Rendus Mathematique. - Elsevier Masson SAS, 2010. - V. 348 , no. 1 . - DOI : 10.1016 / j.crma.2009.11.016 .
  • Donald I. Cartwright, Tim Steger. Enumeration of the 50 fake projective planes // Comptes Rendus Mathematique. - Elsevier Masson SAS, 2010. - V. 348 , no. 1 . - pp . 11–13 . - DOI : 10.1016 / j.crma.2009.11.016 .
  • Wolf P. Barth, Klaus Hulek, Chris AM Peters, Antonius Van de Ven. Compact Complex Surfaces. - Springer-Verlag, Berlin, 2004. - Vol. 4. - (Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge.). - ISBN 978-3-540-00832-3 .
  • Gottfried Barthel, Friedrich Hirzebruch , Thomas Höfer. Geradenkonfigurationen und Algebraische Flächen. - Braunschweig: Friedr. Vieweg & Sohn, 1987. - (Aspects of Mathematics, D4). - ISBN 978-3-528-08907-8 .
  • Fedor A. Bogomolov. Holomorphic tensors and vector bundles on projective manifolds // Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya. - 1978. - V. 42 , no. 6 - p . 1227–1287 . - ISSN 0373-2436 .
  • Armand Borel . Compact Clifford-Klein forms of symmetric spaces // Topology. an International Journal of Mathematics . - 1963. - V. 2 , no. 1-2 . - pp . 111–122 . - ISSN 0040-9383 . - DOI : 10.1016 / 0040-9383 (63) 90026-0 .
  • Donald I. Cartwright, Tim Steger. Enumeration of the 50 fake projective planes. - Comptes Rendus Mathematique. - Elsevier Masson SAS, 2010. - T. 348. - P. 11–13. - DOI : 10.1016 / j.crma.2009.11.016 .
  • Robert W. Easton. Surfaces violating Bogomolov-Miyaoka-Yau in positive positive // Proceedings of the American Mathematical Society . - 2008. - Vol. 136 , no. 7 - pp . 2271–2278 . - ISSN 0002-9939 . - DOI : 10.1090 / S0002-9939-08-09466-5 .
  • Masa-Nori Ishida. An elliptic surface covered by Mumford's fake projective plane // The Tohoku Mathematical Journal. Second Series. - 1988. - V. 40 , no. 3 - p . 367–396 . - ISSN 0040-8735 . - DOI : 10.2748 / tmj / 1178227980 .
  • William E. Lang. Arithmetic and geometry, Vol. Ii. - Boston, MA: Birkhäuser Boston, 1983. - Vol. 36. - P. 167–173. - (Progr. Math.).
  • Yoichi Miyaoka. Inventiones Mathematicae . - 1977. - V. 42 , no. 1 . - pp . 225–237 . - ISSN 0020-9910 . - DOI : 10.1007 / BF01389789 .
  • David Mumford . An algebraic surface with K ample, (K 2 ) = 9, p g = q = 0 // American Journal of Mathematics . - The Johns Hopkins University Press, 1979. - T. 101 , no. 1 . - p . 233–244 . - ISSN 0002-9327 . - DOI : 10.2307 / 2373947 .
  • Gopal Prasad, Sai-Kee Yeung. Fake projective planes // Inventiones Mathematicae . - 2007. - V. 168 , no. 2 - p . 321–370 . - DOI : 10.1007 / s00222-007-0034-5 . - arXiv : math / 0512115 .
  • Gopal Prasad, Sai-Kee Yeung. Addendum to "Fake projective planes" // Inventiones Mathematicae . - 2010. - T. 182 , no. 1 . - p . 213–227 . - DOI : 10.1007 / s00222-010-0259-6 .
  • Antonius Van de Ven. The Prospects of the United States of America . - National Academy of Sciences, 1966. - T. 55 , no. 6 - p . 1624–1627 . - ISSN 0027-8424 . - DOI : 10.1073 / pnas.55.6.1624 .
  • Shing Tung Yau. Calabi's conjecture and algebraic geometry // Proceedings of the United States of America . - National Academy of Sciences, 1977. - T. 74 , no. 5 - p . 1798–1799 . - ISSN 0027-8424 . - DOI : 10.1073 / pnas.74.5.1798 .
  • Shing Tung Yau. On the Ricci curvature of the compact Kähler manifold and the complex Monge-Ampère equation. I // Communications on Pure and Applied Mathematics . - 1978. - V. 31 , no. 3 - pp . 339–411 . - ISSN 0010-3640 . - DOI : 10.1002 / cpa.3160310304 .
Source - https://ru.wikipedia.org/w/index.php?title=Inequality_Bogomolov_—_Miaoki_—_Yau&oldid=91402903


More articles:

  • Chernevo (Vyaznikovsky district)
  • Sergeev Ivan Sergeevich
  • Johannes van der Valt
  • Polster, Matt
  • Rakovich, Dmitry Vasilievich
  • Fomenko, Viktor Grigorievich
  • Hasanov, Abusupyan Magomedovich
  • Turatash
  • Nevezhino (Vyaznikovsky district)
  • Edward Kukan

All articles

Clever Geek | 2019