Clever Geek Handbook
📜 ⬆️ ⬇️

Operation Snub

Two flat-nosed Archimedean bodies
Uniform polyhedron-43-s012.png
Flat-nosed cube or
plane-nosed cuboctahedron
Uniform polyhedron-53-s012.png
Flat nosed dodecahedron or
nasal icosododecahedron
Two chiral copies of a flat-nosed cube as an alternation of (red and green) vertices of a truncated cuboctahedron.
A flat-nosed cube can be constructed by transforming the rhombocuboctahedron by rotating 6 blue square faces until 12 white squares become pairs of equilateral triangles.

The snub operation or clipping vertices is an operation applied to polyhedra. The term appeared from the names given by Kepler to two Archimedean bodies - a flat - nosed cube (cubus simus) and a flat-nosed dodecahedron (dodecaedron simum) [1] . In the general case, flat-nosed forms have a chiral symmetry of two types, with clockwise and counterclockwise orientations. According to Kepler’s names, cutting off vertices can be considered as stretching a regular polyhedron, when the original faces move away from the center and rotate relative to the centers, polygons with centers at these vertices are added instead of the original vertices, and pairs of triangles fill the space between the original edges.

Coxeter generalized the terminology with a slightly different definition for a wider variety of .

Operation Conway's snub

John Conway investigated generalized operations on polyhedra, defining what is now called the Conway notation for polyhedra , which can be applied to polyhedra and mosaics. Conway called the Coxeter operation semi-snub (semi-snub) [2] .

In this notation, snub is defined as a composition of dual and gyro operators,s=dg {\ displaystyle s = dg} {\displaystyle s=dg} , and this is equivalent to a sequence of , truncation, and ambo operators. Conway's notation avoids the alternation operation, since it only applies to polyhedra with faces that have an even number of sides.

Flat nosed regular figures
PolyhedraEuclidean MosaicsHyperbolic mosaics
Notation
Conway
sTsC = sOsI = sDsQsH = sΔsΔ 7
Flat-nosed
polyhedron
TetrahedronCube or
Octahedron
Icosahedron or
Dodecahedron
Square mosaicHexagonal mosaic or
Triangular mosaic
Heptagonal mosaic or
            
Picture      

In 4-dimensional spaces, Conway believes that a should be called a half-plane 24-cell , since it does not represent an alternate , as its counterpart in 3-dimensional space. Instead, it is an alternate, [3] .

Coxeter snub operations, right and quasi-correct

A flat-nosed cube derived from a cube or cuboctahedron
Source bodyFully truncated
polyhedron
r
Truncated
polyhedron
t

h

Cube
Cuboctahedron
Fully truncated cube
Truncated cuboctahedron
Beveled truncated cube
Plane nosed cuboctahedron
Flat-nosed full-truncated cube
CCO
rC
tCO
trC or trO
htCO = sCO
htrC = srC
{4.3}{four3}{\ displaystyle {\ begin {Bmatrix} 4 \\ 3 \ end {Bmatrix}}}   or r {4,3}t{four3}{\ displaystyle t {\ begin {Bmatrix} 4 \\ 3 \ end {Bmatrix}}}   or tr {4,3}ht{four3}=s{four3}{\ displaystyle ht {\ begin {Bmatrix} 4 \\ 3 \ end {Bmatrix}} = s {\ begin {Bmatrix} 4 \\ 3 \ end {Bmatrix}}}  
htr {4.3} = sr {4.3}
         or          or          or      
    

The terminology of “Coxeter's snub” (cutting off the vertices) is somewhat different and means truncation , according to which the plane-nosed cube is obtained by the operation snub (cutting off the vertices) from the cuboctahedron , and the plane-nosed dodecahedron is obtained from the icosododecahedron . This definition is used in the names of Johnson’s two bodies - the flat-faced duclinoid and the flat- nosed square antiprism , as well as in the names of higher-dimensional polyhedra, such as the 4-dimensional ,         or s {3,4,3}.

The correct polyhedron (or mosaic) with the Shlefly symbol,{p,q} {\ displaystyle {\ begin {Bmatrix} p, q \ end {Bmatrix}}}   and Coxeter chart       has a truncation defined ast{p,q} {\ displaystyle t {\ begin {Bmatrix} p, q \ end {Bmatrix}}}   with chart       , and a nasal shape defined as an truncationht{p,q}=s{p,q} {\ displaystyle ht {\ begin {Bmatrix} p, q \ end {Bmatrix}} = s {\ begin {Bmatrix} p, q \ end {Bmatrix}}}   with Coxeter chart       . This construction requires q to be even.

Quasiregular Polyhedron{pq} {\ displaystyle {\ begin {Bmatrix} p \\ q \ end {Bmatrix}}}   or r { p , q }, with a Coxeter diagram     or       has a quasi-correct truncation defined ast{pq} {\ displaystyle t {\ begin {Bmatrix} p \\ q \ end {Bmatrix}}}   or tr { p , q } (with Coxeter diagram     or       ) and a quasiregular plane-nosed shape defined as an truncation of full truncationht{pq}=s{pq} {\ displaystyle ht {\ begin {Bmatrix} p \\ q \ end {Bmatrix}} = s {\ begin {Bmatrix} p \\ q \ end {Bmatrix}}}   or htr { p , q } = sr { p , q } (with Coxeter diagram     or       )

For example, a Kepler's flat-nosed cube is obtained from a quasiregular cuboctahedron with a vertical Shlefli symbol{four3} {\ displaystyle {\ begin {Bmatrix} 4 \\ 3 \ end {Bmatrix}}}   (and Coxeter chart     ) and more precisely called the plane-nosed cuboctahedron , which is expressed by the Shlefli symbols{four3} {\ displaystyle s {\ begin {Bmatrix} 4 \\ 3 \ end {Bmatrix}}}   (with Coxeter chart     ) The plane-nosed cuboctahedron is an alternative to the truncated cuboctahedront{four3} {\ displaystyle t {\ begin {Bmatrix} 4 \\ 3 \ end {Bmatrix}}}   (     )

Regular polyhedra with an even order of vertices can also be reduced to a plane-nosed shape as an alternate truncation, similar to a plane-nosed octahedrons{3,four} {\ displaystyle s {\ begin {Bmatrix} 3.4 \ end {Bmatrix}}}   (       ) (and the flat-nosed tetrahedrons{33} {\ displaystyle s {\ begin {Bmatrix} 3 \\ 3 \ end {Bmatrix}}}   ,       ) represents a pseudo- icosahedron , a regular icosahedron with pyritohedral symmetry . The flat-nosed octahedron is an alternate form of a truncated octahedron ,t{3,four} {\ displaystyle t {\ begin {Bmatrix} 3.4 \ end {Bmatrix}}}   (           ), or in the form of tetrahedral symmetry:t{33} {\ displaystyle t {\ begin {Bmatrix} 3 \\ 3 \ end {Bmatrix}}}   and       .

Truncated
t
Alternate
h
Octahedron
O
Truncated octahedron
tO
Ploskosa octahedron
htO or sO
{3,4}t {3,4}ht {3,4} = s {3,4}
               
   

The operation of cutting off the vertices (noses) of Coxeter also makes it possible to determine the n- antiprism ass{2n} {\ displaystyle s {\ begin {Bmatrix} 2 \\ n \ end {Bmatrix}}}   ors{2,2n} {\ displaystyle s {\ begin {Bmatrix} 2,2n \ end {Bmatrix}}}   based on n-prismst{2n} {\ displaystyle t {\ begin {Bmatrix} 2 \\ n \ end {Bmatrix}}}   ort{2,2n} {\ displaystyle t {\ begin {Bmatrix} 2,2n \ end {Bmatrix}}}   , but{2,n} {\ displaystyle {\ begin {Bmatrix} 2, n \ end {Bmatrix}}}   is a regular osohedron , a degenerate polyhedron, which is an admissible mosaic on a sphere with two-sided or moon-like faces.

Flat Nose Osohedra, {2,2p}
Picture        
Charts
Coxeter
     
     
     
     
     
     
     
     
     
     
     
     
      ...
      ...
     
     
Symbol
Loafs
s {2,4}s {2,6}s {2,8}s {2,10}s {2,12}...
sr {2,2}
s{22}{\ displaystyle s {\ begin {Bmatrix} 2 \\ 2 \ end {Bmatrix}}}  
sr {2,3}
s{23}{\ displaystyle s {\ begin {Bmatrix} 2 \\ 3 \ end {Bmatrix}}}  
sr {2,4}
s{2four}{\ displaystyle s {\ begin {Bmatrix} 2 \\ 4 \ end {Bmatrix}}}  
sr {2,5}
s{2five}{\ displaystyle s {\ begin {Bmatrix} 2 \\ 5 \ end {Bmatrix}}}  
sr {2,6}
s{26}{\ displaystyle s {\ begin {Bmatrix} 2 \\ 6 \ end {Bmatrix}}}  
sr {2.7}
s{27}{\ displaystyle s {\ begin {Bmatrix} 2 \\ 7 \ end {Bmatrix}}}  
sr {2,8} ...
s{2eight}{\ displaystyle s {\ begin {Bmatrix} 2 \\ 8 \ end {Bmatrix}}}   ...
sr {2, ∞}
s{2∞}{\ displaystyle s {\ begin {Bmatrix} 2 \\\ infty \ end {Bmatrix}}}  
Notation
Conway
A2 = TA3 = OA4A5A6A7A8 ...A∞

The same process applies to flat-nosed mosaics:

Triangular mosaic
Δ
Truncated Triangular Mosaic
tΔ
Flat nosed triangular mosaic
htΔ = sΔ
{3,6}t {3,6}ht {3,6} = s {3,6}
               
   

Examples

Flat-faced figures on {p, 4}
SpaceSphericalEuclideanHyperbolic
Picture        
Diagram
Coxeter
                                   ...      
Symbol
Loafs
s {2,4}s {3,4}s {4,4}...
Quasi-regular plane-nosed figures based on r {p, 3}
SpaceSphericalEuclideanHyperbolic
Picture        
Diagram
Coxetere
                                   ...      
Symbol
Loafs
sr {2,3}sr {3,3}sr {4,3}sr {5,3}sr {6,3}...
s{23}{\ displaystyle s {\ begin {Bmatrix} 2 \\ 3 \ end {Bmatrix}}}  s{33}{\ displaystyle s {\ begin {Bmatrix} 3 \\ 3 \ end {Bmatrix}}}  s{four3}{\ displaystyle s {\ begin {Bmatrix} 4 \\ 3 \ end {Bmatrix}}}  s{five3}{\ displaystyle s {\ begin {Bmatrix} 5 \\ 3 \ end {Bmatrix}}}  s{63}{\ displaystyle s {\ begin {Bmatrix} 6 \\ 3 \ end {Bmatrix}}}  s{73}{\ displaystyle s {\ begin {Bmatrix} 7 \\ 3 \ end {Bmatrix}}}  s{eight3}{\ displaystyle s {\ begin {Bmatrix} 8 \\ 3 \ end {Bmatrix}}}  s{∞3}{\ displaystyle s {\ begin {Bmatrix} \ infty \\ 3 \ end {Bmatrix}}}  
Notation
Conway
A3sTsC or sOsD or sIsΗ or sΔ
Quasiregular planos based on r {p, 4}
SpaceSphericalEuclideanHyperbolic
Picture        
Diagram
Coxeter
                                   ...      
Symbol
Loafs
sr {2,4}sr {3,4}sr {4,4}...
s{2four}{\ displaystyle s {\ begin {Bmatrix} 2 \\ 4 \ end {Bmatrix}}}  s{3four}{\ displaystyle s {\ begin {Bmatrix} 3 \\ 4 \ end {Bmatrix}}}  s{fourfour}{\ displaystyle s {\ begin {Bmatrix} 4 \\ 4 \ end {Bmatrix}}}  s{fivefour}{\ displaystyle s {\ begin {Bmatrix} 5 \\ 4 \ end {Bmatrix}}}  s{6four}{\ displaystyle s {\ begin {Bmatrix} 6 \\ 4 \ end {Bmatrix}}}  s{7four}{\ displaystyle s {\ begin {Bmatrix} 7 \\ 4 \ end {Bmatrix}}}  s{eightfour}{\ displaystyle s {\ begin {Bmatrix} 8 \\ 4 \ end {Bmatrix}}}  s{∞four}{\ displaystyle s {\ begin {Bmatrix} \ infty \\ 4 \ end {Bmatrix}}}  
Notation
Conway
A4sC or sOsQ

Inhomogeneous flat-bottomed polyhedrons

In heterogeneous polyhedra, for which an even number of edges converge to the vertices, vertices can be cut off, including some infinite collections, for example:

Flat-nosed bipyramids sdt {2, p}
 
Flat Nose Square Bipyramid
 
Flat Hexagonal Bipyramid
Plane full truncated bipyramids srdt {2, p}
 
Flat Nose Antiprisms {2.2p}
Picture     ...
Symbol
Loafs
ss {2,4}ss {2,6}ss {2,8}ss {2,10} ...
ssr {2,2}
ss{22}{\ displaystyle ss {\ begin {Bmatrix} 2 \\ 2 \ end {Bmatrix}}}  
ssr {2,3}
ss{23}{\ displaystyle ss {\ begin {Bmatrix} 2 \\ 3 \ end {Bmatrix}}}  
ssr {2,4}
ss{2four}{\ displaystyle ss {\ begin {Bmatrix} 2 \\ 4 \ end {Bmatrix}}}  
ssr {2,5} ...
ss{2five}{\ displaystyle ss {\ begin {Bmatrix} 2 \\ 5 \ end {Bmatrix}}}  

Homogeneous flat-stellated stellate polyhedrons of Coxeter

Plane-star stellated polyhedra are constructed according to the Schwartz triangle (pqr) with rational mirrors, in which all the mirrors are active and alternate.

Flat nosed homogeneous stellate polyhedrons
 
s {3 / 2,3 / 2}
         
 

    
 

     
 

    
 

       
 

       
 

    
 

       
 
 

       

Flat-faced polyhedra and Coxeter honeycombs in high-dimensional spaces

In the general case, regular 4-dimensional polyhedra with the Shlefli symbol ,{p,q,r} {\ displaystyle {\ begin {Bmatrix} p, q, r \ end {Bmatrix}}}   and Coxeter chart               has a flat-nosed shape with an extended Shlefly symbols{p,q,r} {\ displaystyle s {\ begin {Bmatrix} p, q, r \ end {Bmatrix}}}   and chart               .

Fully truncated polyhedron{pq,r} {\ displaystyle {\ begin {Bmatrix} p \\ q, r \ end {Bmatrix}}}   = r {p, q, r} , and               has snub symbols{pq,r} {\ displaystyle s {\ begin {Bmatrix} p \\ q, r \ end {Bmatrix}}}   = sr {p, q, r} , and               .

Examples

 
Orthogonal projection of the

There is only one homogeneous plane-nosed polyhedron in 4-dimensional space, the plane- . The correct twenty-four-cell has the Schleaf symbol ,{3,four,3} {\ displaystyle {\ begin {Bmatrix} 3,4,3 \ end {Bmatrix}}}   and Coxeter chart               , and the flat-nosed 24-cell is represented bys{3,four,3} {\ displaystyle s {\ begin {Bmatrix} 3,4,3 \ end {Bmatrix}}}   and chart diagram of Coxeter               . It also has a lower symmetry construction with index 6 ass{333} {\ displaystyle s \ left \ {{\ begin {array} {l} 3 \\ 3 \\ 3 \ end {array}} \ right \}}   or s {3 1,1,1 } and         , and symmetry with index 3 ass{33,four} {\ displaystyle s {\ begin {Bmatrix} 3 \\ 3.4 \ end {Bmatrix}}}   or sr {3,3,4},               or           .

Connecteds{3,four,3,3} {\ displaystyle s {\ begin {Bmatrix} 3,4,3,3 \ end {Bmatrix}}}   or s {3,4,3,3},                   body with lower symmetry ass{33,four,3} {\ displaystyle s {\ begin {Bmatrix} 3 \\ 3,4,3 \ end {Bmatrix}}}   or sr {3,3,4,3} (                   or               ), and with the least symmetry ass{3333} {\ displaystyle s \ left \ {{\ begin {array} {l} 3 \\ 3 \\ 3 \\ 3 \ end {array}} \ right \}}   or s {3 1,1,1,1 } (           )

Euclidean honeycombs are , s {2,6,3} (               ) or sr {2,3,6} (               ) or sr {2,3 [3] } (           )

 

Other Euclidean (equilateral) cells are s {2,4,4} (and               ) or sr {2,4 1,1 } (           ):

 

The only homogeneous planar hyperbolic honeycombs are planar hexagonal mosaic honeycombs , s {3,6,3} and               which can also be constructed as , h {6,3,3},               . It is also constructed as s {3 [3,3] } and       .

Other hyperbolic (isosceles) cells are , s {3,4,4} and               .

See also

  • Flat-nosed polyhedron
Polyhedron Operations
The foundationTruncationFull truncationDual
nost
Sprain
                                                  
          
t 0 {p, q}
{p, q}

t {p, q}
t 1 {p, q}
r {p, q}

2t {p, q}
t 2 {p, q}
2r {p, q}

rr {p, q}

tr {p, q}

h {q, p}
ht 12 {p, q}
s {q, p}
ht 012 {p, q}
sr {p, q}

Notes

  1. ↑ Kepler , Harmonices Mundi , 1619
  2. ↑ Conway, 2008 , p. 287.
  3. ↑ Conway, 2008 , p. 401.

Literature

  • HSM Coxeter, MS Longuet-Higgins, JCP Miller. Uniform polyhedra // Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences. - The Royal Society, 1954. - T. 246 , no. 916 . - S. 401-450 . - ISSN 0080-4614 . - DOI : 10.1098 / rsta . 1954.0003 .
  • Coxeter, HSM 8.6 Partial truncation, or alternation // Regular Polytopes . - 3rd. - 1973. - S. 154–156. - ISBN 0-486-61480-8 .
  • Coxeter . Tables I and II: Regular polytopes and honeycombs // . - 3rd. ed .. - Dover Publications, 1973. - S. 154–156. - ISBN 0-486-61480-8 .
  • HSM Coxeter . Kaleidoscopes: Selected Writings of HSM Coxeter / F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss. - Wiley-Interscience Publication, 1995. - ISBN 978-0-471-01003-6 .
    • (Paper 17) Coxeter , The Evolution of Coxeter – Dynkin diagrams , [Nieuw Archief voor Wiskunde 9 (1991) 233–248]
    • (Paper 22) HSM Coxeter, Regular and Semi Regular Polytopes I , [Math. Zeit. 46 (1940) 380–407, MR 2.10]
    • (Paper 23) HSM Coxeter, Regular and Semi-Regular Polytopes II , [Math. Zeit. 188 (1985) 559–591]
    • (Paper 24) HSM Coxeter, Regular and Semi-Regular Polytopes III , [Math. Zeit. 200 (1988) 3–45]
  • HSM Coxeter . Chapter 3: Wythoff's Construction for Uniform Polytopes // The Beauty of Geometry: Twelve Essays. - Dover Publications, 1999 .-- ISBN 0-486-40919-8 .
  • Uniform Polytopes. - 1991. - (Manuscript).
    • The Theory of Uniform Polytopes and Honeycombs. - University of Toronto, 1966. - (Ph.D. Dissertation).
  • John H. Conway , Heidi Burgiel, Chaim Goodman-Strass. The Symmetries of Things. - 2008. - ISBN 978-1-56881-220-5 .
  • Weisstein, Eric W. Snubification on Wolfram MathWorld .
  • Richard Klitzing. Snubs, alternated facetings, and Stott – Coxeter – Dynkin diagrams // Symmetry: Culture and Science. - 2010 .-- T. 21 , no. 4 . - S. 329–344 .
Source - https://en.wikipedia.org/w/index.php?title=Operation_soughtSnub>&oldid=95824369


More articles:

  • Zhelnin, Leonid Vasilievich
  • Bobrovka (Pugachev district)
  • FC Sassuolo in the season 2015/2016
  • Crazy Couple
  • Trenet (Chad)
  • Men's Volleyball World Championship 2018 - qualification
  • Duse, Eleanor
  • The Battle of Andyra
  • Hazelnuts (River)
  • Mariutsa, Ivan Konstantinovich

All articles

Clever Geek | 2019