Clever Geek Handbook
📜 ⬆️ ⬇️

The problem of four cubes

The problem of four cubes is to find all integer solutions of the Diophantine equation :

x3+y3+z3=w3.{\ displaystyle x ^ {3} + y ^ {3} + z ^ {3} = w ^ {3}.} {\ displaystyle x ^ {3} + y ^ {3} + z ^ {3} = w ^ {3}.}

It should be noted that while several complete solutions of this equation in rational numbers have been proposed, its complete solution in integers for 2018 is unknown [1] .

Examples of integer solutions

The smallest natural solutions:

33+four3+five3=63{\ displaystyle 3 ^ {3} + 4 ^ {3} + 5 ^ {3} = 6 ^ {3}} 3^{3}+4^{3}+5^{3}=6^{3}
one3+63+eight3=93{\ displaystyle 1 ^ {3} + 6 ^ {3} + 8 ^ {3} = 9 ^ {3}} 1^{3}+6^{3}+8^{3}=9^{3}
33+ten3+183=nineteen3{\ displaystyle 3 ^ {3} + 10 ^ {3} + 18 ^ {3} = 19 ^ {3}} 3^3+10^3+18^3=19^3
73+143+173=203{\ displaystyle 7 ^ {3} + 14 ^ {3} + 17 ^ {3} = 20 ^ {3}} 7^{3}+14^{3}+17^{3}=20^{3}
four3+173+223=253{\ displaystyle 4 ^ {3} + 17 ^ {3} + 22 ^ {3} = 25 ^ {3}} 4^{3}+17^{3}+22^{3}=25^{3}
183+nineteen3+213=283{\ displaystyle 18 ^ {3} + 19 ^ {3} + 21 ^ {3} = 28 ^ {3}} 18^{3}+19^{3}+21^{3}=28^{3}
eleven3+153+273=29th3{\ displaystyle 11 ^ {3} + 15 ^ {3} + 27 ^ {3} = 29 ^ {3}} 11^{3}+15^{3}+27^{3}=29^{3}
23+173+403=413{\ displaystyle 2 ^ {3} + 17 ^ {3} + 40 ^ {3} = 41 ^ {3}} 2^{3}+17^{3}+40^{3}=41^{3}
63+323+333=413{\ displaystyle 6 ^ {3} + 32 ^ {3} + 33 ^ {3} = 41 ^ {3}} 6^{3}+32^{3}+33^{3}=41^{3}
sixteen3+233+413=443{\ displaystyle 16 ^ {3} + 23 ^ {3} + 41 ^ {3} = 44 ^ {3}} 16^{3}+23^{3}+41^{3}=44^{3}

If negative values ​​are allowed, then the following identities hold:

- one 3 + 9 3 + ten 3 = 12 3{\ displaystyle -1 ^ {3} + 9 ^ {3} + 10 ^ {3} = 12 ^ {3}} -1^{3}+9^{3}+10^{3}=12^{3}
-23+93+153=sixteen3{\ displaystyle -2 ^ {3} + 9 ^ {3} + 15 ^ {3} = 16 ^ {3}} -2^{3}+9^{3}+15^{3}=16^{3}
-23+153+333=343{\ displaystyle -2 ^ {3} + 15 ^ {3} + 33 ^ {3} = 34 ^ {3}} -2^{3}+15^{3}+33^{3}=34^{3}
-23+413+ 86 3 = 89 3{\ displaystyle -2 ^ {3} + 41 ^ {3} + 86 ^ {3} = 89 ^ {3}} -2^{3}+41^{3}+86^{3}=89^{3}
-33+223+593=603{\ displaystyle -3 ^ {3} + 22 ^ {3} + 59 ^ {3} = 60 ^ {3}} -3^{3}+22^{3}+59^{3}=60^{3}

Complete rational parameterization

G. Hardy and Wright (1938) [2] [3]
  • x=-a(b-3c)(b2+3c2)+afour{\ displaystyle x = -a (b-3c) (b ^ {2} + 3c ^ {2}) + a ^ {4}} x=-a(b-3c)(b^{2}+3c^{2})+a^{4}
    y=a(b+3c)(b2+3c2)-afour{\ displaystyle y = \ quad a (b + 3c) (b ^ {2} + 3c ^ {2}) - a ^ {4}} y=\quad a(b+3c)(b^{2}+3c^{2})-a^{4}
    z=a3(b-3c)-(b2+3c2)2{\ displaystyle z = \ quad a ^ {3} (b-3c) - (b ^ {2} + 3c ^ {2}) ^ {2}} z=\quad a^{3}(b-3c)-(b^{2}+3c^{2})^{2}
    w=a3(b+3c)-(b2+3c2)2{\ displaystyle w = \ quad a ^ {3} (b + 3c) - (b ^ {2} + 3c ^ {2}) ^ {2}} w=\quad a^{3}(b+3c)-(b^{2}+3c^{2})^{2}
N. Elkies [1]
{x=d(-(s+r)t2+(s2+2r2)t-s3+rs2-2r2s-r3),y=d(t3-(s+r)t2+(s2+2r2)t+rs2-2r2s+r3),z=d(-t3+(s+r)t2-(s2+2r2)t+2rs2-r2s+2r3),w=d((s-2r)t2+(r2-s2)t+s3-rs2 + 2 r 2 s - 2 r 3 ){\ displaystyle {\ begin {cases} x = d (- (s + r) t ^ {2} + (s ^ {2} + 2r ^ {2}) ts ^ {3} + rs ^ {2} - 2r ^ {2} sr ^ {3}), \\ y = d (t ^ {3} - (s + r) t ^ {2} + (s ^ {2} + 2r ^ {2}) t + rs ^ {2} -2r ^ {2} s + r ^ {3}), \\ z = d (-t ^ {3} + (s + r) t ^ {2} - (s ^ {2} + 2r ^ {2}) t + 2rs ^ {2} -r ^ {2} s + 2r ^ {3}), \\ w = d ((s-2r) t ^ {2} + (r ^ { 2} -s ^ {2}) t + s ^ {3} -rs ^ {2} + 2r ^ {2} s-2r ^ {3}) \ end {cases}}}  

Other Solution Series

Leonard Euler , 1740
  • x=one-(a-3b)(a2+3b2){\ displaystyle x = 1- (a-3b) (a ^ {2} + 3b ^ {2})}  
    y=-one+(a+3b)(a2+3b2){\ displaystyle y = -1 + (a + 3b) (a ^ {2} + 3b ^ {2})}  
    z=-a-3b+(a2+3b2)2{\ displaystyle z = -a-3b + (a ^ {2} + 3b ^ {2}) ^ {2}}  
    w=-a+3b+(a2+3b2)2{\ displaystyle w = -a + 3b + (a ^ {2} + 3b ^ {2}) ^ {2}}  
Linnik , 1940
  • x=b(a6-b6){\ displaystyle x = b (a ^ {6} -b ^ {6})}  
    y=a(a6-b6){\ displaystyle y = a (a ^ {6} -b ^ {6})}  
    z=b(2a6+3a3b3+b6){\ displaystyle z = b (2a ^ {6} + 3a ^ {3} b ^ {3} + b ^ {6})}  
    w=a(a6+3a3b3+2b6){\ displaystyle w = a (a ^ {6} + 3a ^ {3} b ^ {3} + 2b ^ {6})}  
  • x=a2(b6-7)+9ac-3c2{\ displaystyle x = a ^ {2} (b ^ {6} -7) + 9ac-3c ^ {2}}  
    y=a2[b3(2b3+9)+7]-3ac(2b3+3)+3c2{\ displaystyle y = a ^ {2} {\ big [} b ^ {3} (2b ^ {3} +9) +7 {\ big]} - 3ac (2b ^ {3} +3) + 3c ^ {2}}  
    z=a2b[b3(b3+3)+2]-3abc(b3+2)+3bc2{\ displaystyle z = a ^ {2} b {\ big [} b ^ {3} (b ^ {3} +3) +2 {\ big]} - 3abc (b ^ {3} +2) + 3bc ^ {2}}  
    w=a2b[b3(b3+6)+eleven]-3abc(b3+four)+3bc2{\ displaystyle w = a ^ {2} b {\ big [} b ^ {3} (b ^ {3} +6) +11 {\ big]} - 3abc (b ^ {3} +4) + 3bc ^ {2}}  
  • x=3a2(b6-7)-9ac-c2{\ displaystyle x = 3a ^ {2} (b ^ {6} -7) -9ac-c ^ {2}}  
    y=3a2[b3(2b3-9)+7]-3ac(2b3-3)+c2{\ displaystyle y = 3a ^ {2} {\ big [} b ^ {3} (2b ^ {3} -9) +7 {\ big]} - 3ac (2b ^ {3} -3) + c ^ {2}}  
    z=3a2b[b3(b3-6)+eleven]-3abc(b3-four)+bc2{\ displaystyle z = 3a ^ {2} b {\ big [} b ^ {3} (b ^ {3} -6) +11 {\ big]} - 3abc (b ^ {3} -4) + bc ^ {2}}  
    w=3a2b[b3(b3-3)+2]-3abc(b3-2)+bc2{\ displaystyle w = 3a ^ {2} b {\ big [} b ^ {3} (b ^ {3} -3) +2 {\ big]} - 3abc (b ^ {3} -2) + bc ^ {2}}  
Roger Heath-Brown [1] , 1993
  • x=9afour{\ displaystyle x = 9a ^ {4}}  
    y=3a-9afour{\ displaystyle y = 3a-9a ^ {4}}  
    z=one-9a3{\ displaystyle z = 1-9a ^ {3}}  
    w=one{\ displaystyle w = 1}  
Mordell , 1956
  • x=9a3b+bfour{\ displaystyle x = 9a ^ {3} b + b ^ {4}}  
    y=9afour{\ displaystyle y = 9a ^ {4}}  
    z=-bfour{\ displaystyle z = -b ^ {4}}  
    w=9afour+3ab3{\ displaystyle w = 9a ^ {4} + 3ab ^ {3}}  
  • x=9a3b-bfour{\ displaystyle x = 9a ^ {3} bb ^ {4}}  
    y=9afour-3ab3{\ displaystyle y = 9a ^ {4} -3ab ^ {3}}  
    z=bfour{\ displaystyle z = b ^ {4}}  
    w=9afour{\ displaystyle w = 9a ^ {4}}  
  • x=9a3b+bfour{\ displaystyle x = 9a ^ {3} b + b ^ {4}}  
    y=9a3b-bfour{\ displaystyle y = 9a ^ {3} bb ^ {4}}  
    z=9afour-3ab3{\ displaystyle z = 9a ^ {4} -3ab ^ {3}}  
    w=9afour+3ab3{\ displaystyle w = 9a ^ {4} + 3ab ^ {3}}  
The solution obtained by the method of algebraic geometry ( en: Fermat cubic )
  • x=3a(a2+ab+b2)-9{\ displaystyle x = 3a \ left (a ^ {2} + ab + b ^ {2} \ right) -9}  
    y=(a2+ab+b2)2-9a{\ displaystyle y = \ left (a ^ {2} + ab + b ^ {2} \ right) ^ {2} -9a}  
    z=3(a2+ab+b2)(a+b)+9{\ displaystyle z = 3 \ left (a ^ {2} + ab + b ^ {2} \ right) (a + b) +9}  
    w=(a2+ab+b2)2+9(a+b){\ displaystyle w = \ left (a ^ {2} + ab + b ^ {2} \ right) ^ {2} +9 (a + b)}  
Ramanujan
  • x=3a2+fiveab-fiveb2{\ displaystyle x = 3a ^ {2} + 5ab-5b ^ {2}}  
    y=foura2-fourab+6b2{\ displaystyle y = 4a ^ {2} -4ab + 6b ^ {2}}  
    z=fivea2-fiveab-3b2{\ displaystyle z = 5a ^ {2} -5ab-3b ^ {2}}  
    w=6a2-fourab+fourb2{\ displaystyle w = 6a ^ {2} -4ab + 4b ^ {2}}  
  • x=a7-3afour(one+b)+a(2+6b+3b2){\ displaystyle x = a ^ {7} -3a ^ {4} (1 + b) + a (2 + 6b + 3b ^ {2})}  
    y=2a6-3a3(one+2b)+one+3b+3b2{\ displaystyle y = 2a ^ {6} -3a ^ {3} (1 + 2b) + 1 + 3b + 3b ^ {2}}  
    z=a6-one-3b-3b2{\ displaystyle z = a ^ {6} -1-3b-3b ^ {2}}  
    w=a7-3afourb+a(3b2-one){\ displaystyle w = a ^ {7} -3a ^ {4} b + a (3b ^ {2} -1)}  
  • x=-a2+9ab+b2{\ displaystyle x = -a ^ {2} + 9ab + b ^ {2}}  
    y=a2+7ab-9b2{\ displaystyle y = a ^ {2} + 7ab-9b ^ {2}}  
    z=2a2-fourab+12b2{\ displaystyle z = 2a ^ {2} -4ab + 12b ^ {2}}  
    w=2a2+tenb2{\ displaystyle w = 2a ^ {2} + 10b ^ {2}}  
Unknown author, 1825
  • x=a9-36{\ displaystyle x = a ^ {9} -3 ^ {6}}  
    y=-a9+3fivea3+36{\ displaystyle y = -a ^ {9} + 3 ^ {5} a ^ {3} + 3 ^ {6}}  
    z=33a6+3fivea3{\ displaystyle z = 3 ^ {3} a ^ {6} + 3 ^ {5} a ^ {3}}  
    w=32a7+3fourafour+36a{\ displaystyle w = 3 ^ {2} a ^ {7} + 3 ^ {4} a ^ {4} + 3 ^ {6} a}  
D. Lemer, 1955
  • x=3888aten-135afour{\ displaystyle x = 3888a ^ {10} -135a ^ {4}}  
    y=-3888aten-1296a7-81afour+3a{\ displaystyle y = -3888a ^ {10} -1296a ^ {7} -81a ^ {4} + 3a}  
    z=3888a9+648a6-9a3+one{\ displaystyle z = 3888a ^ {9} + 648a ^ {6} -9a ^ {3} +1}  
    w=one{\ displaystyle w = 1}  
V. B. Labkovsky
  • x=fourb2-elevenb-21{\ displaystyle x = 4b ^ {2} -11b-21}  
    y=3b2+elevenb-28{\ displaystyle y = 3b ^ {2} + 11b-28}  
    z=fiveb2-7b+42{\ displaystyle z = 5b ^ {2} -7b + 42}  
    w=6b2-7b+35{\ displaystyle w = 6b ^ {2} -7b + 35}  
Hardy and Wright
  • x=a(a3-2b3){\ displaystyle x = a (a ^ {3} -2b ^ {3})}  
    y=b(2a3-b3){\ displaystyle y = b (2a ^ {3} -b ^ {3})}  
    z=b(a3+b3){\ displaystyle z = b (a ^ {3} + b ^ {3})}  
    w=a(a3+b3){\ displaystyle w = a (a ^ {3} + b ^ {3})}  
  • x=a(a3-b3){\ displaystyle x = a (a ^ {3} -b ^ {3})}  
    y=b(a3-b3){\ displaystyle y = b (a ^ {3} -b ^ {3})}  
    z=b(2a3+b3){\ displaystyle z = b (2a ^ {3} + b ^ {3})}  
    w=a(a3+2b3){\ displaystyle w = a (a ^ {3} + 2b ^ {3})}  
G. Alexandrov, 1972
  • x=7a2+17ab-6b2{\ displaystyle x = 7a ^ {2} + 17ab-6b ^ {2}}  
    y=42a2-17ab-b2{\ displaystyle y = 42a ^ {2} -17ab-b ^ {2}}  
    z=56a2-35ab+9b2{\ displaystyle z = 56a ^ {2} -35ab + 9b ^ {2}}  
    w=63a2-35ab+eightb2{\ displaystyle w = 63a ^ {2} -35ab + 8b ^ {2}}  
  • x=7a2+17ab-17b2{\ displaystyle x = 7a ^ {2} + 17ab-17b ^ {2}}  
    y=17a2-17ab-7b2{\ displaystyle y = 17a ^ {2} -17ab-7b ^ {2}}  
    z=14a2-20ab+20b2{\ displaystyle z = 14a ^ {2} -20ab + 20b ^ {2}}  
    w=20a2-20ab+14b2{\ displaystyle w = 20a ^ {2} -20ab + 14b ^ {2}}  
  • x=21a2+23ab-nineteenb2{\ displaystyle x = 21a ^ {2} + 23ab-19b ^ {2}}  
    y=nineteena2-23ab-21b2{\ displaystyle y = 19a ^ {2} -23ab-21b ^ {2}}  
    z=18a2+fourab+28b2{\ displaystyle z = 18a ^ {2} + 4ab + 28b ^ {2}}  
    w=28a2+fourab+18b2{\ displaystyle w = 28a ^ {2} + 4ab + 18b ^ {2}}  
  • x=3a2+41ab-37b2{\ displaystyle x = 3a ^ {2} + 41ab-37b ^ {2}}  
    y=37a2-41ab-3b2{\ displaystyle y = 37a ^ {2} -41ab-3b ^ {2}}  
    z=36a2-68ab+46b2{\ displaystyle z = 36a ^ {2} -68ab + 46b ^ {2}}  
    w=46a2-68ab+36b2{\ displaystyle w = 46a ^ {2} -68ab + 36b ^ {2}}  
  • x=-foura2+22ab-9b2{\ displaystyle x = -4a ^ {2} + 22ab-9b ^ {2}}  
    y=36a2-22ab+b2{\ displaystyle y = 36a ^ {2} -22ab + b ^ {2}}  
    z=40a2-40ab+12b2{\ displaystyle z = 40a ^ {2} -40ab + 12b ^ {2}}  
    w=48a2-40ab+tenb2{\ displaystyle w = 48a ^ {2} -40ab + 10b ^ {2}}  
Ajai Choudhry, 1998 [4]
  • dxone=(afour+2a3b+3a2b2+2ab3+bfour)+(2a+b)c3,{\ displaystyle dx_ {1} = (a ^ {4} + 2a ^ {3} b + 3a ^ {2} b ^ {2} + 2ab ^ {3} + b ^ {4}) + (2a + b ) c ^ {3},}  
    dx2=-{afour+2a3b+3a2b2+2ab3+bfour-(a-b)c3},{\ displaystyle dx_ {2} = - \ {a ^ {4} + 2a ^ {3} b + 3a ^ {2} b ^ {2} + 2ab ^ {3} + b ^ {4} - (ab) c ^ {3} \},}  
    dx3=c(-a3+b3+c3),{\ displaystyle dx_ {3} = c (-a ^ {3} + b ^ {3} + c ^ {3}),}  
    dxfour=-{(2a3+3a2b+3ab2+b3)c+cfour},{\ displaystyle dx_ {4} = - \ {(2a ^ {3} + 3a ^ {2} b + 3ab ^ {2} + b ^ {3}) c + c ^ {4} \},}  

where are the numbersa,b,c {\ displaystyle a, b, c}   Are arbitrary integers, and the numberd≠0 {\ displaystyle d \ neq 0}   selected so that the condition is satisfied(xone,x2,x3,xfour)=one {\ displaystyle (x_ {1}, x_ {2}, x_ {3}, x_ {4}) = 1}   .

Koroviev, 2012
  • x=-(2a2-2ab-b2)cd3-(a2-ab+b2)2cfour{\ displaystyle x = - (2a ^ {2} -2ab-b ^ {2}) cd ^ {3} - (a ^ {2} -ab + b ^ {2}) ^ {2} c ^ {4 }}  
    y=(2a2-2ab-b2)c3d+(a2-ab+b2)2dfour{\ displaystyle y = \ quad (2a ^ {2} -2ab-b ^ {2}) c ^ {3} d + (a ^ {2} -ab + b ^ {2}) ^ {2} d ^ { four}}  
    z=(a2+2ab-2b2)c3d-(a2-ab+b2)2dfour{\ displaystyle z = \ quad (a ^ {2} + 2ab-2b ^ {2}) c ^ {3} d- (a ^ {2} -ab + b ^ {2}) ^ {2} d ^ {four}}  
    w=(a2+2ab-2b2)cd3-(a2-ab+b2)2cfour{\ displaystyle w = \ quad (a ^ {2} + 2ab-2b ^ {2}) cd ^ {3} - (a ^ {2} -ab + b ^ {2}) ^ {2} c ^ { four}}  

Wherea {\ displaystyle a}   ,b,c {\ displaystyle b \ ,, \, c}   andd {\ displaystyle d}   - any integers. [five]

See also

  • Euler hypothesis

Notes

  1. ↑ 1 2 Cohen, Henri. 6.4 Diophantine Equations of Degree 3 // Number Theory - Volume I: Tools and Diophantine Equations. - Springer-Verlag , 2007 .-- Vol. 239. - ISBN 978-0-387-49922-2 .
  2. ↑ An introduction to the theory of numbers. - First ed. - Clarendon Press, 1938.
  3. ↑ Quote from the section "1.3.7 Equationx3+y3+z3=t3 {\ displaystyle x ^ {3} + y ^ {3} + z ^ {3} = t ^ {3}}   "from Hardy and Wright
  4. ↑ Ajai Choudhry. On Equal Sums of Cubes . Rocky Mountain J. Math. Volume 28, Number 4 (1998), 1251-1257.
  5. ↑ In many cases, numbersx,y,z,w {\ displaystyle x, y, z, w}   have common divisors. To get a primitive four of numbers, it is enough to reduce each of the numbers by their greatest common divisor .

Literature

  • Hardy G. Twelve Lectures on Ramanujan. - M .: Institute for Computer Research, 2002. - 336 p.
  • V. Sierpinsky . §15. Solution of equations in rational numbers // On the solution of equations in integers . - M .: Fizmatlit, 1961 .-- 88 p.
  • E. Rowland. Known families of integer solutions tox3+y3+z3=n {\ displaystyle x ^ {3} + y ^ {3} + z ^ {3} = n}   (English) : journal. Archived on September 27, 2013.
  • Labkovsky's decision (Task No. 2)
  • Sizyi S. V. 20. Comparisons of any degree in a simple module // Lectures on number theory: a manual for mathematical specialties . - Yekaterinburg: Ural State University named after A.M. Gorky , 1999.
  • Weisstein, Eric W. Diophantine Equation — 3rd Powers on Wolfram MathWorld .
Source - https://ru.wikipedia.org/w/index.php?title=Quest_of_four_cubes_&oldid=101346407


More articles:

  • Streets of Severodonetsk
  • Taeping (clipper)
  • Ismailov, Ali Shamil oglu
  • Startsev, Alexander Ivanovich
  • Mate Claw
  • Sosa, Flaminio
  • Komjaunimo tiesa
  • Stein, George
  • Bundy, Giovanni Carlo
  • USCOR

All articles

Clever Geek | 2019