The problem of four cubes is to find all integer solutions of the Diophantine equation :
- {\ displaystyle x ^ {3} + y ^ {3} + z ^ {3} = w ^ {3}.}

It should be noted that while several complete solutions of this equation in rational numbers have been proposed, its complete solution in integers for 2018 is unknown [1] .
- Leonard Euler , 1740
- {\ displaystyle x = 1- (a-3b) (a ^ {2} + 3b ^ {2})}
- {\ displaystyle y = -1 + (a + 3b) (a ^ {2} + 3b ^ {2})}
- {\ displaystyle z = -a-3b + (a ^ {2} + 3b ^ {2}) ^ {2}}
- {\ displaystyle w = -a + 3b + (a ^ {2} + 3b ^ {2}) ^ {2}}
- Linnik , 1940
- {\ displaystyle x = b (a ^ {6} -b ^ {6})}
- {\ displaystyle y = a (a ^ {6} -b ^ {6})}
- {\ displaystyle z = b (2a ^ {6} + 3a ^ {3} b ^ {3} + b ^ {6})}
- {\ displaystyle w = a (a ^ {6} + 3a ^ {3} b ^ {3} + 2b ^ {6})}
- {\ displaystyle x = a ^ {2} (b ^ {6} -7) + 9ac-3c ^ {2}}
- {\ displaystyle y = a ^ {2} {\ big [} b ^ {3} (2b ^ {3} +9) +7 {\ big]} - 3ac (2b ^ {3} +3) + 3c ^ {2}}
- {\ displaystyle z = a ^ {2} b {\ big [} b ^ {3} (b ^ {3} +3) +2 {\ big]} - 3abc (b ^ {3} +2) + 3bc ^ {2}}
- {\ displaystyle w = a ^ {2} b {\ big [} b ^ {3} (b ^ {3} +6) +11 {\ big]} - 3abc (b ^ {3} +4) + 3bc ^ {2}}
- {\ displaystyle x = 3a ^ {2} (b ^ {6} -7) -9ac-c ^ {2}}
- {\ displaystyle y = 3a ^ {2} {\ big [} b ^ {3} (2b ^ {3} -9) +7 {\ big]} - 3ac (2b ^ {3} -3) + c ^ {2}}
- {\ displaystyle z = 3a ^ {2} b {\ big [} b ^ {3} (b ^ {3} -6) +11 {\ big]} - 3abc (b ^ {3} -4) + bc ^ {2}}
- {\ displaystyle w = 3a ^ {2} b {\ big [} b ^ {3} (b ^ {3} -3) +2 {\ big]} - 3abc (b ^ {3} -2) + bc ^ {2}}
- Roger Heath-Brown [1] , 1993
- {\ displaystyle x = 9a ^ {4}}
- {\ displaystyle y = 3a-9a ^ {4}}
- {\ displaystyle z = 1-9a ^ {3}}
- {\ displaystyle w = 1}
- Mordell , 1956
- {\ displaystyle x = 9a ^ {3} b + b ^ {4}}
- {\ displaystyle y = 9a ^ {4}}
- {\ displaystyle z = -b ^ {4}}
- {\ displaystyle w = 9a ^ {4} + 3ab ^ {3}}
- {\ displaystyle x = 9a ^ {3} bb ^ {4}}
- {\ displaystyle y = 9a ^ {4} -3ab ^ {3}}
- {\ displaystyle z = b ^ {4}}
- {\ displaystyle w = 9a ^ {4}}
- {\ displaystyle x = 9a ^ {3} b + b ^ {4}}
- {\ displaystyle y = 9a ^ {3} bb ^ {4}}
- {\ displaystyle z = 9a ^ {4} -3ab ^ {3}}
- {\ displaystyle w = 9a ^ {4} + 3ab ^ {3}}
- The solution obtained by the method of algebraic geometry ( en: Fermat cubic )
- {\ displaystyle x = 3a \ left (a ^ {2} + ab + b ^ {2} \ right) -9}
- {\ displaystyle y = \ left (a ^ {2} + ab + b ^ {2} \ right) ^ {2} -9a}
- {\ displaystyle z = 3 \ left (a ^ {2} + ab + b ^ {2} \ right) (a + b) +9}
- {\ displaystyle w = \ left (a ^ {2} + ab + b ^ {2} \ right) ^ {2} +9 (a + b)}
- Ramanujan
- {\ displaystyle x = 3a ^ {2} + 5ab-5b ^ {2}}
- {\ displaystyle y = 4a ^ {2} -4ab + 6b ^ {2}}
- {\ displaystyle z = 5a ^ {2} -5ab-3b ^ {2}}
- {\ displaystyle w = 6a ^ {2} -4ab + 4b ^ {2}}
- {\ displaystyle x = a ^ {7} -3a ^ {4} (1 + b) + a (2 + 6b + 3b ^ {2})}
- {\ displaystyle y = 2a ^ {6} -3a ^ {3} (1 + 2b) + 1 + 3b + 3b ^ {2}}
- {\ displaystyle z = a ^ {6} -1-3b-3b ^ {2}}
- {\ displaystyle w = a ^ {7} -3a ^ {4} b + a (3b ^ {2} -1)}
- {\ displaystyle x = -a ^ {2} + 9ab + b ^ {2}}
- {\ displaystyle y = a ^ {2} + 7ab-9b ^ {2}}
- {\ displaystyle z = 2a ^ {2} -4ab + 12b ^ {2}}
- {\ displaystyle w = 2a ^ {2} + 10b ^ {2}}
- Unknown author, 1825
- {\ displaystyle x = a ^ {9} -3 ^ {6}}
- {\ displaystyle y = -a ^ {9} + 3 ^ {5} a ^ {3} + 3 ^ {6}}
- {\ displaystyle z = 3 ^ {3} a ^ {6} + 3 ^ {5} a ^ {3}}
- {\ displaystyle w = 3 ^ {2} a ^ {7} + 3 ^ {4} a ^ {4} + 3 ^ {6} a}
- D. Lemer, 1955
- {\ displaystyle x = 3888a ^ {10} -135a ^ {4}}
- {\ displaystyle y = -3888a ^ {10} -1296a ^ {7} -81a ^ {4} + 3a}
- {\ displaystyle z = 3888a ^ {9} + 648a ^ {6} -9a ^ {3} +1}
- {\ displaystyle w = 1}
- V. B. Labkovsky
- {\ displaystyle x = 4b ^ {2} -11b-21}
- {\ displaystyle y = 3b ^ {2} + 11b-28}
- {\ displaystyle z = 5b ^ {2} -7b + 42}
- {\ displaystyle w = 6b ^ {2} -7b + 35}
- Hardy and Wright
- {\ displaystyle x = a (a ^ {3} -2b ^ {3})}
- {\ displaystyle y = b (2a ^ {3} -b ^ {3})}
- {\ displaystyle z = b (a ^ {3} + b ^ {3})}
- {\ displaystyle w = a (a ^ {3} + b ^ {3})}
- {\ displaystyle x = a (a ^ {3} -b ^ {3})}
- {\ displaystyle y = b (a ^ {3} -b ^ {3})}
- {\ displaystyle z = b (2a ^ {3} + b ^ {3})}
- {\ displaystyle w = a (a ^ {3} + 2b ^ {3})}
- G. Alexandrov, 1972
- {\ displaystyle x = 7a ^ {2} + 17ab-6b ^ {2}}
- {\ displaystyle y = 42a ^ {2} -17ab-b ^ {2}}
- {\ displaystyle z = 56a ^ {2} -35ab + 9b ^ {2}}
- {\ displaystyle w = 63a ^ {2} -35ab + 8b ^ {2}}
- {\ displaystyle x = 7a ^ {2} + 17ab-17b ^ {2}}
- {\ displaystyle y = 17a ^ {2} -17ab-7b ^ {2}}
- {\ displaystyle z = 14a ^ {2} -20ab + 20b ^ {2}}
- {\ displaystyle w = 20a ^ {2} -20ab + 14b ^ {2}}
- {\ displaystyle x = 21a ^ {2} + 23ab-19b ^ {2}}
- {\ displaystyle y = 19a ^ {2} -23ab-21b ^ {2}}
- {\ displaystyle z = 18a ^ {2} + 4ab + 28b ^ {2}}
- {\ displaystyle w = 28a ^ {2} + 4ab + 18b ^ {2}}
- {\ displaystyle x = 3a ^ {2} + 41ab-37b ^ {2}}
- {\ displaystyle y = 37a ^ {2} -41ab-3b ^ {2}}
- {\ displaystyle z = 36a ^ {2} -68ab + 46b ^ {2}}
- {\ displaystyle w = 46a ^ {2} -68ab + 36b ^ {2}}
- {\ displaystyle x = -4a ^ {2} + 22ab-9b ^ {2}}
- {\ displaystyle y = 36a ^ {2} -22ab + b ^ {2}}
- {\ displaystyle z = 40a ^ {2} -40ab + 12b ^ {2}}
- {\ displaystyle w = 48a ^ {2} -40ab + 10b ^ {2}}
- Ajai Choudhry, 1998 [4]
- {\ displaystyle dx_ {1} = (a ^ {4} + 2a ^ {3} b + 3a ^ {2} b ^ {2} + 2ab ^ {3} + b ^ {4}) + (2a + b ) c ^ {3},}
- {\ displaystyle dx_ {2} = - \ {a ^ {4} + 2a ^ {3} b + 3a ^ {2} b ^ {2} + 2ab ^ {3} + b ^ {4} - (ab) c ^ {3} \},}
- {\ displaystyle dx_ {3} = c (-a ^ {3} + b ^ {3} + c ^ {3}),}
- {\ displaystyle dx_ {4} = - \ {(2a ^ {3} + 3a ^ {2} b + 3ab ^ {2} + b ^ {3}) c + c ^ {4} \},}
where are the numbers {\ displaystyle a, b, c} Are arbitrary integers, and the number {\ displaystyle d \ neq 0} selected so that the condition is satisfied {\ displaystyle (x_ {1}, x_ {2}, x_ {3}, x_ {4}) = 1} .
- Koroviev, 2012
- {\ displaystyle x = - (2a ^ {2} -2ab-b ^ {2}) cd ^ {3} - (a ^ {2} -ab + b ^ {2}) ^ {2} c ^ {4 }}
- {\ displaystyle y = \ quad (2a ^ {2} -2ab-b ^ {2}) c ^ {3} d + (a ^ {2} -ab + b ^ {2}) ^ {2} d ^ { four}}
- {\ displaystyle z = \ quad (a ^ {2} + 2ab-2b ^ {2}) c ^ {3} d- (a ^ {2} -ab + b ^ {2}) ^ {2} d ^ {four}}
- {\ displaystyle w = \ quad (a ^ {2} + 2ab-2b ^ {2}) cd ^ {3} - (a ^ {2} -ab + b ^ {2}) ^ {2} c ^ { four}}
Where {\ displaystyle a} , {\ displaystyle b \ ,, \, c} and {\ displaystyle d} - any integers. [five]