Clever Geek Handbook
📜 ⬆️ ⬇️

Koshulya complex

The Koszul complex was first introduced in mathematics by to define the cohomology theory of Lie algebras . Subsequently, he proved to be a useful general construction of homological algebra . Its homology can be used to determine whether a sequence of elements of a ring is , and, as a consequence, it can be used to prove the basic properties of the module or ideal .

Content

Definition

Let R be a commutative ring and E be a free R -module of finite rank r . We denote by∧iE {\ displaystyle \ wedge ^ {i} E}   ith external degree E. Then for an R- linear maps:E→R {\ displaystyle s: E \ to R}   the Koszul complex associated with s is a chain complex of R -modules

K∙(s):0→∧rE→dr∧r-oneE→⋯→∧oneE→doneR→0,{\ displaystyle K _ {\ bullet} (s): 0 \ to \ wedge ^ {r} E {\ overset {d_ {r}} {\ to}} \ wedge ^ {r-1} E \ to \ cdots \ to \ wedge ^ {1} E {\ overset {d_ {1}} {\ to}} R \ to 0,}  

in which the differential d k is given by the rule: for any e i from E

dk(eone∧⋯∧ek)=∑i=onek(-one)i+ones(ei)eone∧⋯∧ei^∧⋯∧ek{\ displaystyle d_ {k} (e_ {1} \ wedge \ dots \ wedge e_ {k}) = \ sum _ {i = 1} ^ {k} (- 1) ^ {i + 1} s (e_ { i}) e_ {1} \ wedge \ cdots \ wedge {\ widehat {e_ {i}}} \ wedge \ cdots \ wedge e_ {k}}  

Superscript⋅^ {\ displaystyle {\ widehat {\ cdot}}}   means that the multiplier is skipped.

notice, that∧oneE=E {\ displaystyle \ wedge ^ {1} E = E}   anddone=s {\ displaystyle d_ {1} = s}   . We also note that∧rE≃R {\ displaystyle \ wedge ^ {r} E \ simeq R}   ; this isomorphism is not canonical (for example, the choice of the volume form in differential geometry is an example of such an isomorphism).

If E = R r (i.e., a basis is chosen), then defining an R- linear mapping s : R r → R is equivalent to defining a finite sequence s 1 , ..., s r of elements R (row vectors) and in this case denoteK∙(sone,...,sr)=K∙(s). {\ displaystyle K _ {\ bullet} (s_ {1}, \ dots, s_ {r}) = K _ {\ bullet} (s).}  

If M is a finitely generated R -module, then

K∙(s,M)=K∙(s)⊗RM{\ displaystyle K _ {\ bullet} (s, M) = K _ {\ bullet} (s) \ otimes _ {R} M}   .

ith homology of the Koszul complex

Hi⁡(K∙(s,M))=ker⁡(di⊗oneM)/im⁡(di+one⊗oneM){\ displaystyle \ operatorname {H} _ {i} (K _ {\ bullet} (s, M)) = \ operatorname {ker} (d_ {i} \ otimes 1_ {M}) / \ operatorname {im} (d_ {i + 1} \ otimes 1_ {M})}  

are called the i-th homology of Koszul . For example, if E = R r ands=[sone⋯sr] {\ displaystyle s = [s_ {1} \ cdots s_ {r}]}   Is a row vector of elements of R , then the differential of the Koszul complexdone⊗oneM {\ displaystyle d_ {1} \ otimes 1_ {M}}   there is

s:Mr→M,(mone,...,mr)↦sonemone+⋯+srmr{\ displaystyle s: M ^ {r} \ to M, \, (m_ {1}, \ dots, m_ {r}) \ mapsto s_ {1} m_ {1} + \ dots + s_ {r} m_ { r}}  

and

H0⁡(K∙(s,M))=M/(sone,...,sr)M=R/(sone,...,sr)⊗RM.{\ displaystyle \ operatorname {H} _ {0} (K _ {\ bullet} (s, M)) = M / (s_ {1}, \ dots, s_ {r}) M = R / (s_ {1} , \ dots, s_ {r}) \ otimes _ {R} M.}  

Also

Hr⁡(K∙(s,M))={m∈M:sonem=s2m=⋯=srm=0}=HomR⁡(R/(sone,...,sr),M).{\ displaystyle \ operatorname {H} _ {r} (K _ {\ bullet} (s, M)) = \ {m \ in M: s_ {1} m = s_ {2} m = \ dots = s_ {r } m = 0 \} = \ operatorname {Hom} _ {R} (R / (s_ {1}, \ dots, s_ {r}), M).}  

Small Koszul Complexes

Given an element x of the ring R and an R -module M , multiplication by x gives a homomorphism of R -modules

M→M.{\ displaystyle M \ to M.}  

If we consider it as a chain complex (concentrated in degrees 1 and 0), it is denotedK(x,M) {\ displaystyle K (x, M)}   . His homologies are equal

H0(K(x,M))=M/xM,Hone(K(x,M))=AnnM(x)={m∈M,xm=0},{\ displaystyle H_ {0} (K (x, M)) = M / xM, H_ {1} (K (x, M)) = Ann_ {M} (x) = \ {m \ in M, xm = 0 \},}  

Thus, the Koszul complex and its homology store the basic information about the properties of multiplication by x .

The chain complex K • ( x ) is called the Koszul complex of the element x of the ring R. If x 1 , x 2 , ..., x n are elements of R , the Koszul complex of the sequence x 1 , x 2 , ..., x n , usually denoted by K • ( x 1 , x 2 , ..., x n ), is the tensor productK∙(xone)⊗K∙(x2)⊗⋯⊗K∙(xn) {\ displaystyle K _ {\ bullet} (x_ {1}) \ otimes K _ {\ bullet} (x_ {2}) \ otimes \ cdots \ otimes K _ {\ bullet} (x_ {n})}   Koszul complexes for each i .

Koszul complex for couples(x,y)∈R2 {\ displaystyle (x, y) \ in R ^ {2}}   has the form

0→R→d2R2→doneR→0,{\ displaystyle 0 \ to R {\ xrightarrow {\ d_ {2} \}} R ^ {2} {\ xrightarrow {\ d_ {1} \}} R \ to 0,}  

where are the matricesdone {\ displaystyle d_ {1}}   andd2 {\ displaystyle d_ {2}}   are set as

done=[xy]{\ displaystyle d_ {1} = {\ begin {bmatrix} x & y \\\ end {bmatrix}}}   and
d2=[-yx].{\ displaystyle d_ {2} = {\ begin {bmatrix} -y \\ x \\\ end {bmatrix}}.}  

Then cycles of degree 1 are exactly linear relations between the elements x and y , while boundaries are trivial relations. The first Koszul homology H 1 ( K • ( x , y )), thus, describe relations modulo trivial relations.

In the case when the elements x 1 , x 2 , ..., x n form a regular sequence, all higher Koszul homologies are nullified.

Example

If k is a field, X 1 , X 2 , ..., X d are unknown and R is a ring of polynomials k [ X 1 , X 2 , ..., X d ], the Koszul complex K • ( X i ) of the sequence X i is a concrete example of the free resolvent of an R -module k .

Literature

  • David Eisenbud , Commutative Algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, vol 150, Springer-Verlag, New York, 1995. ISBN 0-387-94268-8


Source - https://ru.wikipedia.org/w/index.php?title=Koshulya_complex&oldid=89668881


More articles:

  • Plesums, Petr Petrovich
  • Eritrea Football Championship
  • Wine Festival in Zielona Gora
  • Pappas, Yannis
  • Elizarov, Vadim Albertovich
  • Durmush, Mohammed Enes
  • Wilson, Darroll
  • Narco (Season 3)
  • Born Free
  • Harris, Thomas George

All articles

Clever Geek | 2019