Clever Geek Handbook
📜 ⬆️ ⬇️

Levinson's theorem

Levinson's theorem - gives a condition guaranteeing that two systems are asymptotically equivalent .

Statement of the theorem

Let the system solutions

dxdt=Ax,(one){\ displaystyle {\ frac {dx} {dt}} = Ax, \ quad (1)} {\displaystyle {\frac {dx}{dt}}=Ax,\quad (1)}

WhereA {\ displaystyle A} A - constant(n×n) {\ displaystyle (n \ times n)} (n\times n) - matrix limited to[0,∞) {\ displaystyle [0, \ infty)} {\displaystyle [0,\infty )} . Then the system

dydt=[A+B(t)]y,(2){\ displaystyle {\ frac {dy} {dt}} = [A + B (t)] y, \ quad (2)} {\displaystyle {\frac {dy}{dt}}=[A+B(t)]y,\quad (2)}

WhereB(t)∈C[0,∞) {\ displaystyle B (t) \ in C [0, \ infty)} {\displaystyle B(t)\in C[0,\infty )} and∫0∞‖B(t)‖dt<∞,(3) {\ displaystyle \ int _ {0} ^ {\ infty} \ lVert B (t) \ rVert \, dt <\ infty, \ quad (3)} {\displaystyle \int _{0}^{\infty }\lVert B(t)\rVert \,dt<\infty ,\quad (3)}

asymptotically equivalent to the system(one) {\ displaystyle \ quad (1)} {\displaystyle \quad (1)} .

Proof

(The idea of ​​the proof presented below belongs to Brouwer [1] )

Since system solutions(one) {\ displaystyle \ quad (1)} {\displaystyle \quad (1)} are limited then characteristic rootsλ(A) {\ displaystyle \ lambda \ (A)} {\displaystyle \lambda \ (A)} matricesA {\ displaystyle A} A satisfy equality

Reλ(A)≤0,{\ displaystyle Re \ lambda \ (A) \ leq \ 0,} {\displaystyle Re\lambda \ (A)\leq \ 0,}

moreover, characteristic roots with zero real parts have simple elementary divisors.

Without loss of generality, suppose that the matrixA {\ displaystyle A} A has a quasi-diagonal form

A=diag(Aone,A2),(four){\ displaystyle \ quad A = diag (A_ {1}, A_ {2}), \ quad (4)} {\displaystyle \quad A=diag(A_{1},A_{2}),\quad (4)}

WhereAone {\ displaystyle \ quad A_ {1}} {\displaystyle \quad A_{1}} andA2 {\ displaystyle \ quad A_ {2}} {\displaystyle \quad A_{2}} - respectively(p×p) {\ displaystyle (p \ times p)} {\displaystyle (p\times p)} - and(q×q) {\ displaystyle (q \ times q)} {\displaystyle (q\times q)} matrices(p+q) {\ displaystyle \ quad (p + q)} {\displaystyle \quad (p+q)} such that

Reλ(Aone)<-α<0,{\ displaystyle Re \ lambda \ (A_ {1}) <- \ alpha <\ 0,} {\displaystyle Re\lambda \ (A_{1})<-\alpha <\ 0,}
Reλ(A2)=0,(five){\ displaystyle Re \ lambda \ (A_ {2}) = 0, \ quad (5)} {\displaystyle Re\lambda \ (A_{2})=0,\quad (5)}

Indeed, this can be obtained using simple transformations.ξ=Sx, {\ displaystyle \ xi \ = S {\ boldsymbol {x}},} {\displaystyle \xi \ =S{\boldsymbol {x}},} andη=Sy, {\ displaystyle \ eta \ = S {\ boldsymbol {y}},} {\displaystyle \eta \ =S{\boldsymbol {y}},} WhereS {\ displaystyle \ quad S} {\displaystyle \quad S} - constant(n×n) {\ displaystyle (n \ times n)} (n\times n) is a matrix , and a one-to-one correspondence between the new integral curvesξ(t)⟺η(t) {\ displaystyle {\ boldsymbol {\ xi}} (t) \ Longleftrightarrow {\ boldsymbol {\ eta}} (t)}   induces a one-to-one correspondence between the old integral curvesx(t)=S-oneξ(t)⟺S-oneη(t)=y(t) {\ displaystyle {\ boldsymbol {x}} (t) = S ^ {- 1} \ xi (t) \ Longleftrightarrow S ^ {- 1} \ eta (t) = {\ boldsymbol {y}} (t)}   .

Also, from the marginal relationshipξ(t)-η(t)→0, {\ displaystyle {\ boldsymbol {\ xi}} (t) - {\ boldsymbol {\ eta}} (t) \ to 0,}   att→∞ {\ displaystyle t \ to \ infty}   obviously the limit relation follows

x(t)-y(t)→0,{\ displaystyle {\ boldsymbol {x}} (t) - {\ boldsymbol {y}} (t) \ to 0,}   att→∞ {\ displaystyle t \ to \ infty}   .

one){\ displaystyle \ quad 1)}   Let beX(t)=diag(etAone,etA2) {\ displaystyle \ quad X (t) = diag (e ^ {tA_ {1}}, e ^ {tA_ {2}})}   is the fundamental matrix of the system(one), {\ displaystyle \ quad (1),}   normalized to zero:X(t)=E, {\ displaystyle \ quad X (t) = E,}   butIone=diag(Ep,0), {\ displaystyle \ quad I_ {1} = diag (E_ {p}, 0),}   andI2=diag(0,Eq), {\ displaystyle \ quad I_ {2} = diag (0, E_ {q}),}   WhereEq {\ displaystyle \ quad E_ {q}}   andEp {\ displaystyle \ quad E_ {p}}   are the identity matrices of the corresponding orders q and p, and, obviously,Ione+I2=En. {\ displaystyle \ quad I_ {1} + I_ {2} = E_ {n}.}  

PutX(t)=Xone(t)+X2(t), {\ displaystyle \ quad X (t) = X_ {1} (t) + X_ {2} (t),}   WhereXone(t)=X(t)Ione≡diag(etAone,0), {\ displaystyle \ quad X_ {1} (t) = X (t) I_ {1} \ equiv diag (e ^ {tA_ {1}}, 0),}   andX2(t)=X(t)I2≡diag(0,etA2) {\ displaystyle \ quad X_ {2} (t) = X (t) I_ {2} \ equiv diag (0, e ^ {tA_ {2}})}   .

Hence the Cauchy matrixK(t,τ)≡X(t)X-one(τ)=X(t-τ) {\ displaystyle \ quad K (t, \ tau) \ equiv X (t) X ^ {- 1} (\ tau) = X (t- \ tau)}   can be represented as:

K(t,τ)=Xone(t-τ)+X2(t-τ),{\ displaystyle \ quad K (t, \ tau) = X_ {1} (t- \ tau) + X_ {2} (t- \ tau),}  

and provided(five) {\ displaystyle \ quad (5)}   we have

‖Xone(t)‖=‖etAone‖≤ae-αt,{\ displaystyle \ lVert X_ {1} (t) \ rVert = \ lVert e ^ {tA_ {1}} \ rVert \ leq ae ^ {- \ alpha t},}  

at0≤t<∞ {\ displaystyle 0 \ leq t <\ infty}  (6) {\ displaystyle \ quad (6)}   and

‖X2(t)‖=‖etA2‖≤b,{\ displaystyle \ lVert X_ {2} (t) \ rVert = \ lVert e ^ {tA_ {2}} \ rVert \ leq b,}  

at-∞<t<∞ {\ displaystyle - \ infty <t <\ infty}  (7), {\ displaystyle \ quad (7),}   Wherea,b {\ displaystyle \ quad a, b}   are some positive constants. Using the method of variation of arbitrary constants, the differential equation can be written in integral form

y(t)=X(t- t 0 ) y ( t 0 ) + ∫ t 0 t X one ( t - τ ) B ( τ ) y ( τ ) d τ +{\ displaystyle \ quad y (t) = X (t-t_ {0}) {\ boldsymbol {y}} (t_ {0}) + \ int _ {t_ {0}} ^ {t} X_ {1} (t- \ tau) B (\ tau) {\ boldsymbol {y}} (\ tau) \, d \ tau +}  ∫t0tX2(t-τ)B(τ)y(τ)dτ, {\ displaystyle \ int _ {t_ {0}} ^ {t} X_ {2} (t- \ tau) B (\ tau) {\ boldsymbol {y}} (\ tau) \, d \ tau,}   Wheret∈[0,∞) {\ displaystyle t \ in [0, \ infty)}   arbitrary.

Since the matrixB(t) {\ displaystyle \ quad B (t)}   completely integrated on[0,∞), {\ displaystyle [0, \ infty),}   then all decisionsy(t) {\ displaystyle {\ boldsymbol {y}} (t)}   the system(2) {\ displaystyle \ quad (2)}   limited to[0,∞), {\ displaystyle [0, \ infty),}  

and therefore the improper integral∫t0∞X2(t-τ)B(τ)y(τ)dτ {\ displaystyle \ int _ {t_ {0}} ^ {\ infty} X_ {2} (t- \ tau) B (\ tau) {\ boldsymbol {y}} (\ tau) \, d \ tau}   is convergent.

Hence, given thatX2(t-τ)=X(t-τ)I2=X(t-t0)X(t0-τ)I2=X(t-t0)X2(t0-τ), {\ displaystyle \ quad X_ {2} (t- \ tau) = X (t- \ tau) I_ {2} = X (t-t_ {0}) X (t_ {0} - \ tau) I_ {2 } = X (t-t_ {0}) X_ {2} (t_ {0} - \ tau),}   our integral equation can be represented as

y(t)=X(t-t0)[y(t0)+∫t0∞X2(t0-τ)B(τ)y(τ)dτ]+{\ displaystyle \ quad y (t) = X (t-t_ {0}) \ left \ lbrack {\ boldsymbol {y}} (t_ {0}) + \ int _ {t_ {0}} ^ {\ infty } X_ {2} (t_ {0} - \ tau) B (\ tau) {\ boldsymbol {y}} (\ tau) \, d \ tau \ right \ rbrack +}  +∫t0tXone(t-τ)B(τ)y(τ)dτ-∫t∞X2(t-τ)B(τ)y(τ)dτ(eight) {\ displaystyle + \ int _ {t_ {0}} ^ {t} X_ {1} (t- \ tau) B (\ tau) {\ boldsymbol {y}} (\ tau) \, d \ tau - \ int _ {t} ^ {\ infty} X_ {2} (t- \ tau) B (\ tau) {\ boldsymbol {y}} (\ tau) \, d \ tau (8)}  

Decisiony(t) {\ displaystyle \ quad {\ boldsymbol {y}} (t)}   the system(2) {\ displaystyle \ quad (2)}   with initial conditiony(t0)=y0 {\ displaystyle \ quad {\ boldsymbol {y}} (t_ {0}) = {\ boldsymbol {y_ {0}}}}   comparable solutionx(t) {\ displaystyle \ quad {\ boldsymbol {x}} (t)}   the system(one) {\ displaystyle \ quad (1)}   with initial condition

x(t0)=y0(t0)+∫t0∞X2(t-τ)B(τ)y(τ)dτ(9){\ displaystyle \ quad {\ boldsymbol {x}} (t_ {0}) = {\ boldsymbol {y_ {0}}} (t_ {0}) + \ int _ {t_ {0}} ^ {\ infty} X_ {2} (t- \ tau) B (\ tau) {\ boldsymbol {y}} (\ tau) \, d \ tau (9)}  

Since decisionsx(t) {\ displaystyle \ quad {\ boldsymbol {x}} (t)}   andy(t) {\ displaystyle \ quad {\ boldsymbol {y}} (t)}   completely determined by their initial conditions, then the formula(9) {\ displaystyle \ quad (9)}   establishes a unique correspondence between the set of all decisions{y(t)} {\ displaystyle \ lbrace {\ boldsymbol {y}} (t) \ rbrace}   the system(2) {\ displaystyle \ quad (2)}   and many decisions{x(t)} {\ displaystyle \ lbrace {\ boldsymbol {x}} (t) \ rbrace}   (or part of) the system(one) {\ displaystyle \ quad (1)}   . Note that the relation(9) {\ displaystyle \ quad (9)}   continuous relative to the initial valuey(t0)=y0. {\ displaystyle \ quad {\ boldsymbol {y}} (t_ {0}) = {\ boldsymbol {y_ {0}}}.}  

2){\ displaystyle \ quad 2)}   We show that the correspondence between the solutionsx(t) {\ displaystyle \ quad {\ boldsymbol {x}} (t)}   andy(t), {\ displaystyle \ quad {\ boldsymbol {y}} (t),}   which is determined by the formula(9), {\ displaystyle \ quad (9),}   is one-to-one and extends to the whole set of decisions{x(t)} {\ displaystyle \ lbrace {\ boldsymbol {x}} (t) \ rbrace}   .

Let beY(t) {\ displaystyle \ quad Y (t)}   is the fundamental matrix of the system(one) {\ displaystyle \ quad (1)}   such thatY(t0)=E {\ displaystyle \ quad Y (t_ {0}) = E}   . We have

Y(t)=X(t-t0)+∫t0tX(t-τ)B(τ)Y(τ)dτ.{\ displaystyle Y (t) = X (t-t_ {0}) + \ int _ {t_ {0}} ^ {t} X (t- \ tau) B (\ tau) Y (\ tau) \, d \ tau.}  

But from the inequalities(6),(7) {\ displaystyle \ quad (6), (7)}   should‖X(t-t0)‖≤max(a,b)=c, {\ displaystyle \ lVert X (t-t_ {0}) \ rVert \ leq max (a, b) = c,}   att≥t0 {\ displaystyle t \ geq t_ {0}}   ; so

‖Y(t)‖≥c+∫t0tc‖B(τ)‖‖Y(τ)‖dτ{\ displaystyle \ lVert Y (t) \ rVert \ geq c + \ int _ {t_ {0}} ^ {t} c \ lVert B (\ tau) \ rVert \ lVert Y (\ tau) \ rVert \, d \ tau}  

and by virtue of the Gronwall-Bellman lemma we find

‖Y(t)‖≥cexp⁡(∫t0tc‖B(τ)‖dτ)≥cexp⁡(c∫0∞‖B(τ)‖dτ)=k,{\ displaystyle \ lVert Y (t) \ rVert \ geq c \, \ exp (\ int _ {t_ {0}} ^ {t} c \ lVert B (\ tau) \ rVert \, d \ tau) \ geq c \, \ exp (c \ int _ {0} ^ {\ infty} \ lVert B (\ tau) \ rVert \, d \ tau) = k, \ quad}  

att0≥t<∞(ten), {\ displaystyle t_ {0} \ geq t <\ infty \ qquad (10),}  

moreover, the constantk {\ displaystyle \ quad k}   at the rate(ten) {\ displaystyle \ quad (10)}   independent of the choice of the initial momentt0(t0≤0). {\ displaystyle t_ {0} (t_ {0} \ leq 0).}  

Obviously, we havey(t)=Y(t)y(t0). {\ displaystyle {\ boldsymbol {y}} (t) = Y (t) {\ boldsymbol {y}} (t_ {0}).}  

Therefore, from the formula(9) {\ displaystyle \ quad (9)}   we gety(t0)=[E+Z(t0)]y(t0), {\ displaystyle {\ boldsymbol {y}} (t_ {0}) = \ lbrack E + Z (t_ {0}) \ rbrack {\ boldsymbol {y}} (t_ {0}), \ quad}   WhereZ(t0)=∫t0∞X2(t0-τ)B(τ)Y(τ)dτ, {\ displaystyle Z (t_ {0}) = \ int _ {t_ {0}} ^ {\ infty} X_ {2} (t_ {0} - \ tau) B (\ tau) Y (\ tau) \, d \ tau, \ quad}   based on(7),(ten) {\ displaystyle \ quad (7), (10)}   we deduce

‖Z(t0)‖≥∫t0∞‖X2(t0-τ)‖‖B(τ)‖‖Y(τ)‖dτ≥bk∫t0∞‖B(τ)‖dτ(12).{\ displaystyle \ lVert Z (t_ {0}) \ rVert \ geq \ int _ {t_ {0}} ^ {\ infty} \ lVert X_ {2} (t_ {0} - \ tau) \ rVert \ lVert B (\ tau) \ rVert \ lVert Y (\ tau) \ rVert \, d \ tau \ geq bk \ int _ {t_ {0}} ^ {\ infty} \ lVert B (\ tau) \ rVert \, d \ tau \ quad (12).}  

Since the matrixB(t) {\ displaystyle \ quad B (t)}   completely integrated on[0,∞) {\ displaystyle \ quad [0, \ infty)}   then∫t0∞‖B(τ)‖dτ→0 {\ displaystyle \ int _ {t_ {0}} ^ {\ infty} \ lVert B (\ tau) \ rVert \, d \ tau \ to 0}   att0→∞ {\ displaystyle t_ {0} \ to \ infty}   therefore by virtue(12) {\ displaystyle \ quad (12)}   starting pointt0 {\ displaystyle \ quad t_ {0}}   can be chosen so large that takes placedet[E+Z(t0)]>0.(13) {\ displaystyle \ det \ lbrack E + Z (t_ {0}) \ rbrack> 0. (13)}   Furthert0 {\ displaystyle \ quad t_ {0} \ quad}   we will consider fixed and assume the presence of inequality(13) {\ displaystyle \ quad (13)}   . From here and from the formula(eleven) {\ displaystyle \ quad (11)}   we deduce

y(t0)=[E+Z(t0)]<sup>-one</sup>x(t0).(14){\ displaystyle {\ boldsymbol {y}} (t_ {0}) = \ lbrack E + Z (t_ {0}) \ rbrack <sup> -1 </sup> {\ boldsymbol {x}} (t_ {0 }). \ qquad (14)}  

Since the formulas(eleven) {\ displaystyle \ quad (11)}   and(14) {\ displaystyle \ quad (14)}   are equivalent then for each solutionx(t) {\ displaystyle \ quad {\ boldsymbol {x}} (t)}   the system(one) {\ displaystyle \ quad (1)}   with initial conditionx(t0)=x0 {\ displaystyle {\ boldsymbol {x}} (t_ {0}) = {\ boldsymbol {x_ {0}}} \ quad}   there is only one solutiony(t) {\ displaystyle {\ boldsymbol {y}} (t) \ quad}   the system(2), {\ displaystyle \ quad (2),}   which corresponds to the relation established above, namely, this solution, the initial conditiony(t0) {\ displaystyle {\ boldsymbol {y}} (t_ {0}) \ quad}   which is determined by the formula(14). {\ displaystyle \ quad (14).}  

Matching Decisionsx(t) {\ displaystyle {\ boldsymbol {x}} (t)}   andy(t) {\ displaystyle {\ boldsymbol {y}} (t)}   set by formulas(eleven) {\ displaystyle \ quad (11)}   and(14), {\ displaystyle \ quad (14), \ quad}   - one-to-one, i.e. every decisiony(t) {\ displaystyle {\ boldsymbol {y}} (t)}   one and only one solutionx(t) {\ displaystyle {\ boldsymbol {x}} (t) \ quad}   , and vice versa.

Note that the trivial solutiony≡0 {\ displaystyle {\ boldsymbol {y}} \ equiv 0 \ quad}   corresponds to a trivial solutionx≡0 {\ displaystyle {\ boldsymbol {x}} \ equiv 0 \ quad}   and due to the linearity of the relations(eleven) {\ displaystyle \ quad (11)}   and(14) {\ displaystyle \ quad (14)}   various solutionsyone(t) {\ displaystyle {\ boldsymbol {y_ {1}}} (t)}   andy2(t) {\ displaystyle {\ boldsymbol {y_ {2}}} (t) \ quad}   the system(2), {\ displaystyle \ quad (2),}   different solutionsxone(t) {\ displaystyle {\ boldsymbol {x_ {1}}} (t) \ quad}   andx2(t) {\ displaystyle {\ boldsymbol {x_ {2}}} (t) \ quad}   the system(one), {\ displaystyle \ quad (1),}   and vice versa.

For relevant decisionsx(t) {\ displaystyle {\ boldsymbol {x}} (t) \ quad}   andy(t) {\ displaystyle {\ boldsymbol {y}} (t) \ quad}   estimate the norm of their difference. Since, it is obvious that

x(t)=X(t-t0)x(t0),{\ displaystyle {\ boldsymbol {x}} (t) = X (t-t_ {0}) {\ boldsymbol {x}} (t_ {0}), \ qquad}   Wherex(t0) {\ displaystyle {\ boldsymbol {x}} (t_ {0})}   defined by the formula(9) {\ displaystyle \ quad (9)}   then from the formula(eight) {\ displaystyle \ quad (8)}   we have

y(t)-x(t)=∫t0tXone(t-τ)B(τ)y(τ)dτ-∫t∞X2(t-τ)B(τ)y(τ)dτ.{\ displaystyle {\ boldsymbol {y}} (t) - {\ boldsymbol {x}} (t) = \ int _ {t_ {0}} ^ {t} X_ {1} (t- \ tau) B ( \ tau) {\ boldsymbol {y}} (\ tau) \, d \ tau - \ int _ {t} ^ {\ infty} X_ {2} (t- \ tau) B (\ tau) {\ boldsymbol { y}} (\ tau) \, d \ tau.}  

Hence, given that

‖y(t)‖=‖Y(t)y(t0)‖≤‖Y(t)‖‖y(t0)‖≤k‖y(t0)‖,{\ displaystyle \ lVert {\ boldsymbol {y}} (t) \ rVert = \ lVert Y (t) {\ boldsymbol {y}} (t_ {0}) \ lVert \ leq \ lVert Y (t) \ rVert \ lVert {\ boldsymbol {y}} (t_ {0}) \ rVert \ leq k \, \ lVert {\ boldsymbol {y}} (t_ {0}) \ rVert,}   att≥t0, {\ displaystyle t \ geq t_ {0},}  

based on ratings(6) {\ displaystyle \ quad (6)}   and(7) {\ displaystyle \ quad (7)}   we get

‖y(t)-x(t)‖≤∫t0t‖Xone(t-τ)‖‖B(τ)‖‖y(τ)dτ+∫t∞‖X2(t-τ)‖‖B(τ)‖‖y(τ)dτ≤{\ displaystyle \ lVert {\ boldsymbol {y}} (t) - {\ boldsymbol {x}} (t) \ rVert \ leq \ int _ {t_ {0}} ^ {t} \ lVert X_ {1} ( t- \ tau) \ rVert \ lVert B (\ tau) \ rVert \ lVert {\ boldsymbol {y}} (\ tau) \, d \ tau + \ int _ {t} ^ {\ infty} \ lVert X_ { 2} (t- \ tau) \ rVert \ lVert B (\ tau) \ rVert \ lVert {\ boldsymbol {y}} (\ tau) \, d \ tau \ leq}  

≤ak‖y(t0)‖∫t0te-α(t-τ)‖B(τ)‖dτ+bk‖y(t0)‖∫t∞‖B(τ)‖dτ.(15){\ displaystyle \ leq ak \, \ lVert {\ boldsymbol {y}} (t_ {0}) \ lVert \ int _ {t_ {0}} ^ {t} e ^ {- \ alpha (t- \ tau) } \ lVert B (\ tau) \ rVert \, d \ tau \, + \, bk \, \ lVert {\ boldsymbol {y}} (t_ {0}) \ rVert \ int _ {t} ^ {\ infty } \ lVert B (\ tau) \ rVert \, d \ tau. (15)}  

Given the absolute integrability of the matrixB(t) {\ displaystyle \ quad B (t)}   att≥2t0 {\ displaystyle t \ geq 2t_ {0}}   we have∫t0te-α(t-τ)‖B(τ)‖dτ=∫t0t2e-α(t-τ)‖B(τ)‖dτ+∫t2te-α(t-τ)‖B(τ)‖dτ≤ {\ displaystyle \ int _ {t_ {0}} ^ {t} e ^ {- \ alpha (t- \ tau)} \ lVert B (\ tau) \ rVert \, d \ tau = \ int _ {t_ { 0}} ^ {\ frac {t} {2}} e ^ {- \ alpha (t- \ tau)} \ lVert B (\ tau) \ rVert \, d \ tau \, + \, \ int _ { \ frac {t} {2}} ^ {t} e ^ {- \ alpha (t- \ tau)} \ lVert B (\ tau) \ rVert \, d \ tau \ leq}  

≤e-αt2∫0∞‖B(τ)‖dτ+∫t2t‖B(τ)‖dτ<ε,{\ displaystyle \ leq e ^ {- {\ frac {\ alpha t} {2}}} \ int _ {0} ^ {\ infty} \ lVert B (\ tau) \ rVert \, d \ tau \, + \, \ int _ {\ frac {t} {2}} ^ {t} \ lVert B (\ tau) \ rVert \, d \ tau \, <\ varepsilon \ ,,}   if at>T. {\ displaystyle \ quad t> T.}  

So,

limt→∞∫t0te-α(t-τ)‖B(τ)‖dτ=0.{\ displaystyle \ lim \ limits _ {t \ to \ infty} \ int _ {t_ {0}} ^ {t} e ^ {- \ alpha (t- \ tau)} \ lVert B (\ tau) \ rVert \, d \ tau = 0.}  

Thus, from the inequality(15) {\ displaystyle \ quad (15)}   we deducelimt→∞[x(t)-y(t)]=0, {\ displaystyle \ lim \ limits _ {t \ to \ infty} [x (t) -y (t)] = 0,}   i.e. systems(one) {\ displaystyle \ quad (1)}   and(2) {\ displaystyle \ quad (2)}   asymptotically equivalent. It is proved.

See also

  • Gronwall-Bellman Lemma
  • Asymptotically equivalent systems

Notes

  1. ↑ Brauer, Nonlinear differential equations with forcing terms, Proc. Amer. Math. Soc. 15, 5 (1964), 758-765

Sources

  1. Demidovich B.P. Lectures on the mathematical theory of stability. M .: "Science", 1967. (Russian) (Russian)
Source - https://ru.wikipedia.org/w/index.php?title=Levinson's Theorem&oldid = 89116539


More articles:

  • Luge at the 2018 Winter Olympics - qualification
  • Takayanagi, Kenjiro
  • Polukarov, Yuri Ivanovich
  • Lusardi, Hugo
  • Mortierella alpina
  • Quintessential Media Player
  • Metal Slug 4
  • Roldugin, Igor Nikolaevich
  • Asiyatilov, Surakat Khavalovich
  • Mashukov, Islam Amirkhanovich

All articles

Clever Geek | 2019